In late 2019, COVID-19 virus emerged as a dangerous disease that led to millions of fatalities and changed how human beings interact with each other and forced people to wear masks with mandatory lockdown. The ability...
详细信息
Subspace clustering has shown great potential in discovering the hidden low-dimensional subspace structures in high-dimensional data. However, most existing methods still face the problem of noise distortion and overl...
详细信息
Graphics processing units (GPUs) have been increasingly used to solve a range of compute-intensive and data-parallel scientific computing problems that can be perfectly parallelized for performance speedups. Particula...
详细信息
Multimedia data encompasses various modalities, including audio, visual, and text, necessitating the development of robust retrieval methods capable of harnessing these modalities to extract and retrieve semantic info...
详细信息
Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in in...
详细信息
Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in increasing their agricultural productivity daily since there are no technologies in the previous system to detect diseases in various crops in an agricultural environment. With the exponential population growth, food scarcity is a huge concern globally. In addition to this, the productivity of agricultural products has been highly impacted by the rapid increase in phytopathological adversities. The main challenges in leaf segmentation and plant disease identification are prior knowledge is required for segmentation, the implementation still lacks the accuracy of results, and more tweaking is required. To reduce the devastating impacts of illnesses on the economy, early detection of illnesses in plants is therefore essential. This paper describes an approach for segmenting and detecting plant leaf diseases based on images acquired via the Internet of Things (IoT) network. Here, a plant leaf area is segmented with a UNet, whose trainable parameters are optimized using the Mayfly Bald Eagle Optimization (MBEO) algorithm. Further, plant type classification is carried out by the Deep batch normalized AlexNet (DbneAlexNet), optimized by the Sine Cosine Algorithm-based Rider Neural Network (SCA-based RideNN). Finally, the DbneAlexNet, with weights adapted by the MBEO algorithm, is used to identify plant disease. The Plant Village dataset is used to evaluate the proposed DbneAlexNet-MBEO for plant-type classification and disease detection. The efficiency of the UNet-MBEO for segmentation is examined based on the Dice coefficient and Intersectin over Union (IOU) and has achieved superior values of 0.927 and 0.907. Moreover, the DbneAlexNet-MBEO is examined considering accuracy, Test Negative Rate (TNR), and Test Positive Rate (TPR) and offered superior values of 0
To serve a convenient healthcare network, storing medical images and diagnosis records in the cloud is a straightforward solution. Encrypting the medical images before uploading them to the cloud is a trivial strategy...
详细信息
This work presents a blockchain-based communication architecture for multi-agent smart manufacturing systems, enhanced with federated learning to improve security, data privacy, and scalability. Comparative evaluation...
详细信息
In AI pandemic applications, the online automatic AI recording apparatus for official councils such as court trials, business conferences and commercial meetings will become imperative because it could let the opinion...
详细信息
As Programmable Logic Controllers (PLCs) become more integrated into complex industrial systems and networks, their software components face increased security vulnerabilities. Fuzz testing, which uses unexpected inpu...
详细信息
In recent years, academics have placed a high value on multi-modal emotion identification, as well as extensive research has been conducted in the areas of video, text, voice, and physical signal emotion detection. Th...
详细信息
暂无评论