咨询与建议

限定检索结果

文献类型

  • 1,610 篇 会议
  • 1,408 篇 期刊文献
  • 42 册 图书

馆藏范围

  • 3,060 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,886 篇 工学
    • 1,204 篇 计算机科学与技术...
    • 998 篇 软件工程
    • 513 篇 控制科学与工程
    • 309 篇 信息与通信工程
    • 248 篇 生物工程
    • 210 篇 机械工程
    • 198 篇 生物医学工程(可授...
    • 196 篇 电气工程
    • 136 篇 电子科学与技术(可...
    • 134 篇 光学工程
    • 107 篇 仪器科学与技术
    • 77 篇 化学工程与技术
    • 62 篇 力学(可授工学、理...
    • 61 篇 安全科学与工程
    • 59 篇 交通运输工程
    • 57 篇 材料科学与工程(可...
    • 57 篇 建筑学
  • 1,052 篇 理学
    • 546 篇 数学
    • 271 篇 生物学
    • 268 篇 物理学
    • 206 篇 统计学(可授理学、...
    • 163 篇 系统科学
    • 74 篇 化学
  • 415 篇 管理学
    • 263 篇 管理科学与工程(可...
    • 161 篇 图书情报与档案管...
    • 112 篇 工商管理
  • 177 篇 医学
    • 153 篇 临床医学
    • 125 篇 基础医学(可授医学...
    • 95 篇 药学(可授医学、理...
  • 69 篇 法学
    • 64 篇 社会学
  • 41 篇 教育学
  • 31 篇 经济学
  • 30 篇 农学
  • 10 篇 文学
  • 1 篇 哲学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 141 篇 intelligent robo...
  • 96 篇 intelligent syst...
  • 81 篇 computer science
  • 81 篇 robot sensing sy...
  • 72 篇 artificial intel...
  • 67 篇 machine learning
  • 56 篇 mobile robots
  • 55 篇 control systems
  • 55 篇 feature extracti...
  • 54 篇 reinforcement le...
  • 50 篇 robots
  • 48 篇 neural networks
  • 44 篇 deep learning
  • 44 篇 training
  • 42 篇 navigation
  • 42 篇 robotics and aut...
  • 41 篇 cameras
  • 41 篇 semantics
  • 41 篇 humans
  • 40 篇 robot kinematics

机构

  • 103 篇 max planck insti...
  • 45 篇 department of co...
  • 36 篇 department of co...
  • 32 篇 mpi for intellig...
  • 32 篇 google
  • 28 篇 institute for ar...
  • 28 篇 university of ch...
  • 27 篇 state key lab on...
  • 26 篇 max planck insti...
  • 24 篇 department of co...
  • 22 篇 institutes for r...
  • 21 篇 research institu...
  • 20 篇 department of el...
  • 20 篇 state key labora...
  • 17 篇 ieee
  • 16 篇 department of co...
  • 15 篇 institute for in...
  • 14 篇 shenzhen institu...
  • 13 篇 center for fuzzy...
  • 13 篇 shanghai researc...

作者

  • 47 篇 sun maosong
  • 43 篇 schölkopf bernha...
  • 42 篇 rus vasile
  • 40 篇 bernhard schölko...
  • 33 篇 liu zhiyuan
  • 32 篇 kevin murphy
  • 31 篇 huang minlie
  • 26 篇 peters jan
  • 22 篇 behnke sven
  • 18 篇 hu xiaolin
  • 18 篇 carlos silvestre
  • 18 篇 martius georg
  • 17 篇 g.a. bekey
  • 17 篇 su kaile
  • 17 篇 franklin stan
  • 16 篇 banjade rajendra
  • 16 篇 liu jiang
  • 16 篇 locatello france...
  • 16 篇 bauer stefan
  • 16 篇 dimitrios i. fot...

语言

  • 2,922 篇 英文
  • 117 篇 其他
  • 21 篇 中文
  • 1 篇 日文
检索条件"机构=Computer Science Department and Institute for Robotics and Intelligent Systems"
3060 条 记 录,以下是41-50 订阅
排序:
Secure-by-Construction Synthesis for Control systems
收藏 引用
IEEE Transactions on Automatic Control 2025年 第6期70卷 4170-4177页
作者: Zhong, Bingzhuo Liu, Siyuan Caccamo, Marco Zamani, Majid Thrust of Artificial Intelligence Information Hub The Thrust of Intelligent Transportation System Hub China KTH Royal Institute of Technology Division of Decision and Control Systems Stockholm Sweden Technical University of Munich TUM School of Engineering and Design Germany University of Colorado Boulder Department of Computer Science United States Ludwig Maximilian University Department of Computer Science Munich Germany
In this note, we present the synthesis of secure-by-construction controllers that address safety and security properties simultaneously in cyber-physical systems. Our focus is on studying a specific security property ... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service robotics
arXiv
收藏 引用
arXiv 2024年
作者: Bode, Jonas Pätzold, Bastian Memmesheimer, Raphael Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
MOTPose: Multi-object 6D Pose Estimation for Dynamic Video Sequences using Attention-based Temporal Fusion
arXiv
收藏 引用
arXiv 2024年
作者: Periyasamy, Arul Selvam Behnke, Sven the Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics the Center for Robotics the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Cluttered bin-picking environments are challenging for pose estimation models. Despite the impressive progress enabled by deep learning, single-view RGB pose estimation models perform poorly in cluttered dynamic envir... 详细信息
来源: 评论
Self-Centering 3-DoF Feet Controller for Hands-Free Locomotion Control in Telepresence and Virtual Reality
arXiv
收藏 引用
arXiv 2024年
作者: Memmesheimer, Raphael Lenz, Christian Schwarz, Max Schreiber, Michael Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
We present a novel seated feet controller for handling 3 Degree of Freedom (DoF) aimed to control locomotion for telepresence robotics and virtual reality environments. Tilting the feet on two axes yields in forward, ... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service robotics
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Jonas Bode Bastian Pätzold Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects
Grasp Anything: Combining Teacher-Augmented Policy Gradient ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Malte Mosbach Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, an... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven Autonomous Intelligent Systems group Computer Science Institute VI-Intelligent Systems and Robotics Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects
arXiv
收藏 引用
arXiv 2024年
作者: Mosbach, Malte Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI - Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, an... 详细信息
来源: 评论
DiffSSC: Semantic LiDAR Scan Completion using Denoising Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Perception systems play a crucial role in autonomous driving, incorporating multiple sensors and corresponding computer vision algorithms. 3D LiDAR sensors are widely used to capture sparse point clouds of the vehicle... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Helin Cao Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论