Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Carbon neutrality has become an important design objective worldwide. However, the on-going shift to cloud-naive era does not necessarily mean energy efficiency. From the perspective of power management, co-hosted ser...
详细信息
Carbon neutrality has become an important design objective worldwide. However, the on-going shift to cloud-naive era does not necessarily mean energy efficiency. From the perspective of power management, co-hosted serverless functions are difficult to tame. They are lightweight, short-lived applications sensitive to power capping activities. In addition, they exhibit great individual and temporal variability, presenting idiosyncratic performance/power scaling goals that are often at odds with one another. To date, very few proposals exist in terms of tailored power management for serverless platforms. In this work, we introduce power synchronization, a novel yet generic mechanism for managing serverless functions in a power-efficient way. Our insight with power synchronization is that uniform application power behavior enables consistent and uncompromised function operation on shared host machines. We also propose PowerSync, a synchronization-based power management framework that ensures optimal efficiency based on a clear understanding of functions. Our evaluation shows that PowerSync can improve the energy efficiency of functions by up to 16% without performance loss compared to conventional power management strategies.
Changes in the Atmospheric Electric Field Signal(AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information ...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information implicit in AEFS changes. In this paper, a Fuzzy C-Means(FCM) clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS. First, a time series dataset is created in the time domain using AEFS attributes. The AEFS-based weather is evaluated according to the time-series Membership Degree(MD) changes obtained by inputting this dataset into the FCM. Second, thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus. Thus, a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain. Finally, the rationality and reliability of the proposed method are verified by combining radar charts and expert experience. The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS, and a negative distance-MD correlation is obtained for the first time. The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
Major concerns occur in maintaining a sustainable food supply due to population expansion, supply chain interruptions, and climate-related changes. Traditional forecasting models, such as ARIMA, LSTM, and GRU, fail to...
详细信息
“Flying Ad Hoc Networks(FANETs)”,which use“Unmanned Aerial Vehicles(UAVs)”,are developing as a critical mechanism for numerous applications,such as military operations and civilian *** dynamic nature of FANETs,wit...
详细信息
“Flying Ad Hoc Networks(FANETs)”,which use“Unmanned Aerial Vehicles(UAVs)”,are developing as a critical mechanism for numerous applications,such as military operations and civilian *** dynamic nature of FANETs,with high mobility,quick node migration,and frequent topology changes,presents substantial hurdles for routing protocol *** the preceding few years,researchers have found that machine learning gives productive solutions in routing while preserving the nature of FANET,which is topology change and high *** paper reviews current research on routing protocols and Machine Learning(ML)approaches applied to FANETs,emphasizing developments between 2021 and *** research uses the PRISMA approach to sift through the literature,filtering results from the SCOPUS database to find 82 relevant *** research study uses machine learning-based routing algorithms to beat the issues of high mobility,dynamic topologies,and intermittent connection in *** compared with conventional routing,it gives an energy-efficient and fast decision-making solution in a real-time environment,with greater fault tolerance *** protocols aim to increase routing efficiency,flexibility,and network stability using ML’s predictive and adaptive *** comprehensive review seeks to integrate existing information,offer novel integration approaches,and recommend future research topics for improving routing efficiency and flexibility in ***,the study highlights emerging trends in ML integration,discusses challenges faced during the review,and discusses overcoming these hurdles in future research.
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
Cloud computing involves accessing and using computing resources, such as servers, storage, and software applications, over the Internet, enabling scalable access on demand. Cloud computing systems are becoming an ess...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
An image can convey a thousand words. This statement emphasizes the importance of illustrating ideas visually rather than writing them down. Although detailed image representation is typically instructive, there are s...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
暂无评论