Wireless Sensor Networks (WSNs) are essential for collecting and transmitting data in modern applications that rely on data, where effective network connectivity and coverage are crucial. The optimal placement of rout...
详细信息
Wireless Sensor Networks (WSNs) are essential for collecting and transmitting data in modern applications that rely on data, where effective network connectivity and coverage are crucial. The optimal placement of router nodes within WSNs is a fundamental challenge that significantly impacts network performance and reliability. Researchers have explored various approaches using metaheuristic algorithms to address these challenges and optimize WSN performance. This paper introduces a new hybrid algorithm, CFL-PSO, based on combining an enhanced Fick’s Law algorithm with comprehensive learning and Particle Swarm Optimization (PSO). CFL-PSO exploits the strengths of these techniques to strike a balance between network connectivity and coverage, ultimately enhancing the overall performance of WSNs. We evaluate the performance of CFL-PSO by benchmarking it against nine established algorithms, including the conventional Fick’s law algorithm (FLA), Sine Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO), Salp Swarm Optimization (SSO), War Strategy Optimization (WSO), Harris Hawk Optimization (HHO), African Vultures Optimization Algorithm (AVOA), Capuchin Search Algorithm (CapSA), Tunicate Swarm Algorithm (TSA), and PSO. The algorithm’s performance is extensively evaluated using 23 benchmark functions to assess its effectiveness in handling various optimization scenarios. Additionally, its performance on WSN router node placement is compared against the other methods, demonstrating its competitiveness in achieving optimal solutions. These analyses reveal that CFL-PSO outperforms the other algorithms in terms of network connectivity, client coverage, and convergence speed. To further validate CFL-PSO’s effectiveness, experimental studies were conducted using different numbers of clients, routers, deployment areas, and transmission ranges. The findings affirm the effectiveness of CFL-PSO as it consistently delivers favorable optimization results when compared to existing meth
Efficient message dissemination in Vehicular Ad Hoc Networks (VANETs) relies on robust connectivity between neighboring vehicular nodes, yet it is often compromised by malicious intruders. While recent literature prop...
详细信息
Blockchain-based Payment Channel Network (PCN) routing for payment transactions includes the transfer of funds between multiple parties through a network of interconnected payment channels. These channels permit off-c...
详细信息
Recurrent Neural Networks (RNNs) are commonly used in data-driven approaches to estimate the Remaining Useful Lifetime (RUL) of power electronic devices. RNNs are preferred because their intrinsic feedback mechanisms ...
详细信息
作者:
Liawatimena, SuryadiputraGunawan, DevinaBina Nusantara University
Automotive & Robotics Program Computer Engineering Department BINUS ASO School of Engineering Computer Science Deparment BINUS Graduate Program Master of Computer Science Jakarta11480 Indonesia Bina Nusantara University
Automotive & Robotics Program Computer Engineering Department BINUS ASO School of Engineering Jakarta11480 Indonesia
Modern retail businesses face a significant challenge with the inefficiency of manually changing price labels on shelves. This manual process not only consumes valuable time and resources but also increases the likeli...
详细信息
Smartphones contain a vast amount of information about their users, which can be used as evidence in criminal cases. However, the sheer volume of data can make it challenging for forensic investigators to identify and...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network *** study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic *** primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss ***,a carbon tax is included in the objective function to reduce carbon *** scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal *** results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution ***,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)*** research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local *** emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
The goal of the proposed system is to identify whether a video has endured software manipulation or not. This system specially deals with identifying deepfake videos from real ones. As new techniques emerged to make d...
详细信息
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ...
详细信息
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their *** proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their ***,two distinct kinds of features are obtained from the segmented images to help identify the objects of *** Artificial Neural Network(ANN)is then used to recognize the objects based on their *** were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested *** findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.
Wheat is the most important cereal crop,and its low production incurs import pressure on the *** fulfills a significant portion of the daily energy requirements of the human *** wheat disease is one of the major facto...
详细信息
Wheat is the most important cereal crop,and its low production incurs import pressure on the *** fulfills a significant portion of the daily energy requirements of the human *** wheat disease is one of the major factors that result in low production and negatively affects the national ***,timely detection of wheat diseases is necessary for improving *** CNN-based architectures showed tremendous achievement in the image-based classification and prediction of crop ***,these models are computationally expensive and need a large amount of training *** this research,a light weighted modified CNN architecture is proposed that uses eight layers particularly,three convolutional layers,three SoftMax layers,and two flattened layers,to detect wheat diseases *** high-resolution images were collected from the fields in Azad Kashmir(Pakistan)and manually annotated by three human *** convolutional layers use 16,32,and 64 *** filter uses a 3×3 kernel *** strides for all convolutional layers are set to *** this research,three different variants of datasets are *** variants S1-70%:15%:15%,S2-75%:15%:10%,and S3-80%:10%:10%(train:validation:test)are used to evaluate the performance of the proposed *** extensive experiments revealed that the S3 performed better than S1 and S2 datasets with 93%*** experiment also concludes that a more extensive training set with high-resolution images can detect wheat diseases more accurately.
暂无评论