咨询与建议

限定检索结果

文献类型

  • 383 篇 会议
  • 254 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 640 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 359 篇 工学
    • 180 篇 计算机科学与技术...
    • 155 篇 软件工程
    • 147 篇 控制科学与工程
    • 60 篇 机械工程
    • 45 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 36 篇 信息与通信工程
    • 33 篇 电气工程
    • 30 篇 仪器科学与技术
    • 29 篇 光学工程
    • 17 篇 电子科学与技术(可...
    • 15 篇 力学(可授工学、理...
    • 14 篇 材料科学与工程(可...
    • 12 篇 安全科学与工程
    • 11 篇 交通运输工程
    • 11 篇 航空宇航科学与技...
    • 10 篇 动力工程及工程热...
    • 10 篇 建筑学
    • 10 篇 土木工程
  • 180 篇 理学
    • 83 篇 数学
    • 57 篇 物理学
    • 44 篇 系统科学
    • 42 篇 生物学
    • 24 篇 统计学(可授理学、...
  • 66 篇 管理学
    • 46 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 43 篇 医学
    • 32 篇 基础医学(可授医学...
    • 32 篇 临床医学
    • 26 篇 药学(可授医学、理...
  • 7 篇 法学
  • 7 篇 农学
  • 5 篇 经济学
  • 3 篇 教育学
  • 1 篇 文学

主题

  • 55 篇 intelligent robo...
  • 31 篇 robot sensing sy...
  • 28 篇 computer science
  • 28 篇 robotics and aut...
  • 27 篇 mobile robots
  • 23 篇 control systems
  • 22 篇 robots
  • 22 篇 intelligent syst...
  • 21 篇 humans
  • 18 篇 robustness
  • 17 篇 navigation
  • 17 篇 trajectory
  • 16 篇 artificial intel...
  • 16 篇 robot kinematics
  • 15 篇 neural networks
  • 15 篇 cameras
  • 15 篇 feature extracti...
  • 14 篇 testing
  • 14 篇 kinematics
  • 13 篇 robotic assembly

机构

  • 10 篇 department of co...
  • 9 篇 jet propulsion l...
  • 7 篇 institute of sys...
  • 7 篇 robotics and aut...
  • 7 篇 department of el...
  • 7 篇 institute for ro...
  • 7 篇 robotics institu...
  • 7 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 state key labora...
  • 6 篇 institute of tec...
  • 6 篇 robotics institu...
  • 6 篇 shenzhen institu...
  • 6 篇 institutes for r...
  • 6 篇 key laboratory o...
  • 5 篇 robotics institu...
  • 5 篇 department of el...
  • 5 篇 department of ex...
  • 5 篇 university of ch...
  • 5 篇 department of el...

作者

  • 19 篇 carlos silvestre
  • 13 篇 g.a. bekey
  • 11 篇 silvestre carlos
  • 11 篇 rita cunha
  • 10 篇 s. lee
  • 10 篇 g.s. sukhatme
  • 9 篇 grzymala-busse j...
  • 9 篇 hippe zdzislaw s...
  • 7 篇 bekey george a.
  • 6 篇 h. x. zhang
  • 6 篇 ma jun
  • 6 篇 r. khosla
  • 6 篇 ge shuzhi sam
  • 6 篇 w. wang
  • 6 篇 vladimir popov
  • 5 篇 j. w. zhang
  • 5 篇 ricardo g. sanfe...
  • 5 篇 reyes mauricio
  • 5 篇 pedro casau
  • 5 篇 s.i. roumeliotis

语言

  • 615 篇 英文
  • 20 篇 其他
  • 5 篇 中文
检索条件"机构=Computer Science Department and the Institute for Expert Systems and Robotics"
640 条 记 录,以下是231-240 订阅
排序:
Front Cover: Micrometer-Sized Liposome-Based systems: A Hierarchical Breakdown (ChemsystemsChem 3/2025)
ChemSystemsChem
收藏 引用
ChemsystemsChem 2025年 第3期7卷
作者: Prof. Dr. Shogo Hamada Dr. Hironori Sugiyama Prof. Dr. Yiting Zhang Prof. Dr. Shoji Iwabuchi Soichiro Hiroi Toshiki Maruyama Yuktesh Balaji Sota Kumagai Prof. Dr. Satoshi Murata Prof. Dr. Taro Toyota Department of Computer Science School of Computing & Department of Systems and Control Engineering School of Engineering Institute of Science Tokyo 4259 Nagatsuta-cho Midori-ku Yokohama-city Kanagawa 226-8501 Japan These authors contributed equally. Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan Department of Chemistry College of Science Rikkyo University 3-34-1 Nishi-Ikebukuro Toshima-ku Tokyo 171-8501 Japan Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei-shi Tokyo 185-8588 Japan Department of Basic Science Graduate School of Arts and Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8902 Japan Department of Robotics Graduate School of Engineering Tohoku University 6-6-01 Aramaki-Aza Aoba Aoba-ku Sendai Miyagi 980-8579 Japan Universal Biology Institute The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
来源: 评论
F2A2: Flexible Fully-decentralized Approximate Actor-critic for Cooperative Multi-agent Reinforcement Learning
arXiv
收藏 引用
arXiv 2020年
作者: Li, Wenhao Jin, Bo Wang, Xiangfeng Yan, Junchi Zha, Hongyuan School of Data Science The Chinese University of Hong Kong Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518172 China School of Software Engineering Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201804 China School of Computer Science and Technology Key Laboratory of Mathematics and Engineering Applications Ministry of Education East China Normal University Shanghai200062 China Department of Computer Science and Engineering Key Laboratory of Artificial Intelligence Ministry of Education Shanghai Jiao Tong University Shanghai200240 China
Traditional centralized multi-agent reinforcement learning (MARL) algorithms are sometimes unpractical in complicated applications due to non-interactivity between agents, the curse of dimensionality, and computation ... 详细信息
来源: 评论
Spherical interpolated convolutional network with distance-feature density for 3D semantic segmentation of point clouds
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Guangming Yang, Yehui Zhang, Huixin Liu, Zhe Wang, Hesheng Department of Automation Insititue of Medical Robotics Key Laboratory of System Control and Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China Beijing Advanced Innovation Center for Intelligent Robots and Systems Beijing Institute of Technology China Department of Computer Science and Technology University of Cambridge United Kingdom
The semantic segmentation of point clouds is an important part of the environment perception for robots. However, it is difficult to directly adopt the traditional 3D convolution kernel to extract features from raw 3D... 详细信息
来源: 评论
Semi-supervised medical image classification with relation-driven self-ensembling model
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Quande Yu, Lequan Luo, Luyang Dou, Qi Heng, Pheng Ann Department of Computer Science and Engineering Chinese University of Hong Kong Department of Radiation Oncology Stanford University StanfordCA94305 United States T Stone Robotics Institute Chinese University of Hong Kong Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China
Training deep neural networks usually requires a large amount of labeled data to obtain good performance. However, in medical image analysis, obtaining high-quality labels for the data is laborious and expensive, as a... 详细信息
来源: 评论
Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
arXiv
收藏 引用
arXiv 2021年
作者: Lalande, Alain Chen, Zhihao Pommier, Thibaut Decourselle, Thomas Qayyum, Abdul Salomon, Michel Ginhac, Dominique Skandarani, Youssef Boucher, Arnaud Brahim, Khawla de Bruijne, Marleen Camarasa, Robin Correia, Teresa M. Feng, Xue Girum, Kibrom B. Hennemuth, Anja Huellebrand, Markus Hussain, Raabid Ivantsits, Matthias Ma, Jun Meyer, Craig Sharma, Rishabh Shi, Jixi Tsekos, Nikolaos V. Varela, Marta Wang, Xiyue Yang, Sen Zhang, Hannu Zhang, Yichi Zhou, Yuncheng Zhuang, Xiahai Couturier, Raphael Meriaudeau, Fabrice ImViA laboratory University of Burgundy Dijon France MRI department University Hospital of Dijon Dijon France Femto-ST laboratory University of Franche-Comté Belfort France Cardiology department University Hospital of Dijon Dijon France CASIS Company Quetigny France National Engineering School of Sousse University of Sousse Sousse Tunisia LASEE laboratory National Engineering School of Monastir University of Monastir Monastir Tunisia Biomedical Imaging Group Rotterdam Erasmus MC Rotterdam Netherlands Department of Radiology and Nuclear Medicine Erasmus MC Rotterdam Netherlands Department of Computer Science University of Copenhagen Copenhagen Denmark Centre of Marine Sciences University of Algarve Faro Portugal School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom Department of Biomedical Engineering University of Virginia Charlottesville United States Charité – Universitätsmedizin Berlin Berlin Germany Fraunhofer MEVIS Bremen Germany German Centre for Cardiovascular Research Berlin Germany Department of Mathematics Nanjing University of Science and Technology Nanjing China Data Analysis and Intelligent Systems Lab Department of Computer Science University of Houston Houston United States Medical Robotics and Imaging Lab Department of Computer Science University of Houston Houston United States National Heart and Lung Institute Imperial College London London United Kingdom College of Computer Science Sichuan University Chengdu China College of Biomedical Engineering Sichuan University Chengdu China School of Biological Science and Medical Engineering Beihang University Beijing China School of Data Science Fudan University Shanghai China
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-M... 详细信息
来源: 评论
Metrics Reloaded: Recommendations for image analysis validation
arXiv
收藏 引用
arXiv 2022年
作者: Maier-Hein, Lena Reinke, Annika Godau, Patrick Tizabi, Minu D. Buettner, Florian Christodoulou, Evangelia Glocker, Ben Isensee, Fabian Kleesiek, Jens Kozubek, Michal Reyes, Mauricio Riegler, Michael A. Wiesenfarth, Manuel Emre Kavur, A. Sudre, Carole H. Baumgartner, Michael Eisenmann, Matthias Heckmann-Nötzel, Doreen Rädsch, Tim Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Benis, Arriel Blaschko, Matthew B. Jorge Cardoso, M. Cheplygina, Veronika Cimini, Beth A. Collins, Gary S. Farahani, Keyvan Ferrer, Luciana Galdran, Adrian Ginneken, Bram Van Haase, Robert Hashimoto, Daniel A. Hoffman, Michael M. Huisman, Merel Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kenngott, Hannes Kofler, Florian Kopp-Schneider, Annette Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Petersen, Jens Rajpoot, Nasir Rieke, Nicola Saez-Rodriguez, Julio Sánchez, Clara I. Shetty, Shravya Smeden, Maarten Van Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. Calster, Ben Van Varoquaux, Gaël Jäger, Paul F. Heidelberg Division of Intelligent Medical Systems and HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg a partnership between DKFZ University Medical Center Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Intelligent Medical Systems Germany partner site Frankfurt/Mainz a partnership between DKFZ and UCT Frankfurt-Marburg Germany Heidelberg Goethe University Frankfurt Germany Department of Medicine Goethe University Frankfurt Germany Department of Informatics Frankfurt Cancer Insititute Germany Department of Computing Imperial College London London United Kingdom Heidelberg Division of Medical Image Computing and HI Applied Computer Vision Lab Germany Institute for AI in Medicine University Medicine Essen Essen Germany Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic ARTORG Center for Biomedical Engineering Research University of Bern Bern Switzerland Department of Radiation Oncology University Hospital Bern University of Bern Bern Switzerland Simula Metropolitan Center for Digital Engineering Oslo Norway UiT The Arctic University of Norway Romsø Norway Heidelberg Division of Biostatistics Germany Heidelberg Division of Intelligent Medical Systems Division of Medical Image Computing HI Applied Computer Vision Lab Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Heidelberg Division of Medical Image Computing Germany Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montréal
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. Particularly in automatic biomedical image analysis, chosen performance metrics often do not ref... 详细信息
来源: 评论
Quantitative Evaluation of Endoscopic SLAM Methods: EndoSLAM Dataset
arXiv
收藏 引用
arXiv 2020年
作者: Ozyoruk, Kutsev Bengisu Incetan, Kagan Coskun, Gulfize Gokceler, Guliz Irem Almalioglu, Yasin Mahmood, Faisal Durr, Nicholas J. Curto, Eva Perdigoto, Luis Oliveira, Marina Araujo, Helder Alexandrino, Henrique Gilbert, Hunter B. Turan, Mehmet Institute of Biomedical Engineering Bogazici University Computer Science Department University of Oxford Oxford United Kingdom Department of Pathology Harvard Medical School BostonMA United States Department of Biomedical Engineering Johns Hopkins University BaltimoreMD United States Institute for Systems and Robotics University of Coimbra Portugal Faculty of Medicine Clinical Academic Center of Coimbra University of Coimbra Coimbra Portugal Department of Mechanical and Industrial Engineering Louisiana State University Baton RougeLA United States
Deep learning techniques hold promise to improve dense topography reconstruction and pose estimation, as well as simultaneous localization and mapping (SLAM). However, currently available datasets do not support effec... 详细信息
来源: 评论
Precision of sung notes in carnatic music  19
Precision of sung notes in carnatic music
收藏 引用
19th International Society for Music Information Retrieval Conference, ISMIR 2018
作者: Viraraghavan, Venkata Subramanian Murthy, Hema A. Aravind, R. TCS Research and Innovation Embedded Systems and Robotics Bangalore India Department of Electrical Engineering Indian Institute of Technology Madras India Department of Computer Science and Engineering Indian Institute of Technology Madras India
Carnatic music is replete with continuous pitch movement called gamakas and can be viewed as consisting of constant-pitch notes (CPNs) and transients. The stationary points (STAs) of transients – points where the pit... 详细信息
来源: 评论
Guest Editorial Special Issue on Affordances
收藏 引用
IEEE Transactions on Cognitive and Developmental systems 2018年 第1期10卷 1-3页
作者: Jamone, Lorenzo Ugur, Emre Santos-Victor, José ARQ-Advanced Robotics at Queen Mary School of Electronic Engineering and Computer Science Queen Mary University of London London United Kingdom Computer Engineering Department Boǧaziçi University Istanbul Turkey Institute for Systems and Robotics Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
The concept of affordances appeared in psychology during the late 60s, as an alternative perspective on the visual perception of the environment. More precisely, the term affordances was introduced by J. J. Gibson i... 详细信息
来源: 评论
A registration-aided domain adaptation network for 3D Point cloud based place recognition
arXiv
收藏 引用
arXiv 2020年
作者: Qiao, Zhijian Hu, Hanjiang Shi, Weiang Chen, Siyuan Liu, Zhe Wang, Hesheng Department of Automation Insititue of Medical Robotics Key Laboratory of System Control and Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China Beijing Advanced Innovation Center for Intelligent Robots and Systems Beijing Institute of Technology China Department of Mechanical Engineering Carnegie Mellon University United States Department of Computer Science and Technology University of Cambridge United Kingdom
In the field of large-scale SLAM for autonomous driving and mobile robotics, 3D point cloud based place recognition has aroused significant research interest due to its robustness to changing environments with drastic... 详细信息
来源: 评论