The integration of renewable energy resources has made power system management increasingly complex. DRL is a potential solution to optimize power system operations, but it requires significant time and resources duri...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the desig...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the design of sequential scanning beams for target detection with the required sensing resolution has not been tackled in the *** bridge this gap, this paper introduces a resolution-aware beam scanning design. In particular, the transmit information beamformer, the covariance matrix of the dedicated radar signal, and the receive beamformer are jointly optimized to maximize the average sum rate of the system while satisfying the sensing resolution and detection probability requirements.A block coordinate descent(BCD)-based optimization framework is developed to address the non-convex design problem. By exploiting successive convex approximation(SCA), S-procedure, and semidefinite relaxation(SDR), the proposed algorithm is guaranteed to converge to a stationary solution with polynomial time complexity. Simulation results show that the proposed design can efficiently handle the stringent detection requirement and outperform existing antenna-activation-based methods in the literature by exploiting the full degrees of freedom(DoFs) brought by all antennas.
In this paper, we introduce EMD-Based Hyperbolic Diffusion Distance (EMD-HDD), a new method for constructing a meaningful distance metric for hierarchical data with latent hierarchical structure. Our method relies on ...
详细信息
Traditionally, conical ridge horn antennas are used for feeding large reflectors, but they can cause grating lobes in arrays. This paper introduces a compact Vivaldi antenna for monopulse radar, featuring a planar fee...
详细信息
Combining optical and electronic systems could enable information processing that is a million times faster than existing gigahertz technology. Imagine leveraging nature’s fastest processes to power the electronics i...
详细信息
Combining optical and electronic systems could enable information processing that is a million times faster than existing gigahertz technology. Imagine leveraging nature’s fastest processes to power the electronics in semiconductor chips, quantum sensors and quantum computers. Such transformative speed would not only greatly improve the performance of technology, but unveil new vistas for fundamental science as well.
Multi-exposure image fusion (MEF) involves combining images captured at different exposure levels to create a single, well-exposed fused image. MEF has a wide range of applications, including low light, low contrast, ...
详细信息
The proliferation of Internet of Things (IoT) devices across multiple domains has heralded an era of unprecedented connectivity and data exchange. Fog computing enhances edge-network processing, enabling real-time dat...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Light...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction and semantic information processing, thereby significantly increasing inference speed. To enhance the detection capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to YOLOv5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable for real-time detection tasks on mobile and embedded devices.
This paper presents the current challenges of expanding our handheld skin cancer detection system towards large-scale application on different skin regions across the human body. The analysis is based on temporal diel...
详细信息
暂无评论