Wireless Sensor Network (WSN) infrastructure has to be balanced for maintaining the Quality of Service (QoS) in the network. However, load balancing technology is complex for meeting the requirements of high flexibili...
详细信息
With the growth of the World Wide Web, a large amount of music data is available on the Internet. A large number of people listen to music online rather than downloading and listening offline. But only some sites prov...
详细信息
The upsurge in urbanization is depleting natural resources due to the wide usage of aggregates in construction, posing a menace to further progress. If the contemporary state persists, it becomes a threat for further ...
详细信息
A progressive neurodegenerative ailment called Parkinson's disease (PD) is marked by the death of dopamine-producing cells in the substantia nigra area of the brain. The exact etiology of PD remains elusive, but i...
详细信息
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detecti...
详细信息
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL). Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction.
The Internet of Things (IoT) has revolutionized our lives, but it has also introduced significant security and privacy challenges. The vast amount of data collected by these devices, often containing sensitive informa...
详细信息
Wireless sensor networks (WSNs) are normally conveyed in arbitrary regions with no security. The source area uncovers significant data about targets. In this paper, a plan dependent on the cloud utilising data publish...
详细信息
Sentiment analysis can be used to identify if a text’s sentiment is neutral, positive, or negative. One type of natural language processing is sentiment analysis. An interdisciplinary field encompassing linguistics, ...
详细信息
Bot detection is considered a crucial security issue that is extensively analysed in various existingapproaches. Machine Learning is an efficient way of botnet attack detection. Bot detectionis the major issue faced b...
详细信息
Bot detection is considered a crucial security issue that is extensively analysed in various existingapproaches. Machine Learning is an efficient way of botnet attack detection. Bot detectionis the major issue faced by the existing system. This research concentrates on adopting a graphbasedfeature learning process to reduce feature dimensionality. The incoming samples arecorrectly classified and optimised using an Adaboost classifier with an improved grey wolfoptimiser (g-AGWO). The proposed IGWO optimisation approach is adopted to fulfil the multiconstraintissues related to bot detection and provide better local and global solutions (to satisfyexploration and exploitation). The extensive results show that the proposed g-AGWO model outperformsexisting approaches to reduce feature dimensionality, under-fitting/over-fitting andexecution time. The error rate prediction shows the feasibility of the given model to work over thechallenging environment. This model also works efficiently towards the unseen data to achievebetter generalization.
The increasing number of electronic transactions on the Internet has given rise to the design of recommendation systems. The main objective of these systems is to give recommendations to the users about the items (i.e...
详细信息
暂无评论