The difficulty of successfully scanning handwritten text arises from variances in style, size, and orientation, which affect handwriting optical character recognition (OCR). This study provides a novel strategy that i...
详细信息
Cloud storage is essential for managing user data to store and retrieve from the distributed data *** storage service is distributed as pay a service for accessing the size to collect the *** to the massive amount of ...
详细信息
Cloud storage is essential for managing user data to store and retrieve from the distributed data *** storage service is distributed as pay a service for accessing the size to collect the *** to the massive amount of data stored in the data centre containing similar information and file structures remaining in multi-copy,duplication leads to increase storage *** potential deduplication system doesn’t make efficient data reduction because of inaccuracy in finding similar data *** creates a complex nature to increase the storage consumption under *** resolve this problem,this paper proposes an efficient storage reduction called Hash-Indexing Block-based Deduplication(HIBD)based on Segmented Bind Linkage(SBL)Methods for reducing storage in a cloud ***,preprocessing is done using the sparse augmentation ***,the preprocessed files are segmented into blocks to make *** block of the contents is compared with other files through Semantic Content Source Deduplication(SCSD),which identifies the similar content presence between the *** on the content presence count,the Distance Vector Weightage Correlation(DVWC)estimates the document similarity weight,and related files are grouped into a ***,the segmented bind linkage compares the document to find duplicate content in the cluster using similarity weight based on the coefficient match *** implementation helps identify the data redundancy efficiently and reduces the service cost in distributed cloud storage.
In the realm of low-level vision tasks,such as image deraining and dehazing,restoring images distorted by adverse weather conditions remains a significant *** emergence of abundant computational resources has driven t...
详细信息
In the realm of low-level vision tasks,such as image deraining and dehazing,restoring images distorted by adverse weather conditions remains a significant *** emergence of abundant computational resources has driven the dominance of deep Convolutional Neural Networks(CNNs),supplanting traditional methods reliant on prior ***,the evolution of CNN architectures has tended towards increasing complexity,utilizing intricate structures to enhance performance,often at the expense of computational *** response,we propose the Selective Kernel Dense Residual M-shaped Network(SKDRMNet),a flexible solution adept at balancing computational efficiency with network accuracy.A key innovation is the incorporation of an M-shaped hierarchical structure,derived from the U-Net framework as M-Network(M-Net),within which the Selective Kernel Dense Residual Module(SDRM)is introduced to reinforce multi-scale semantic feature *** methodology employs two sampling techniques-bilinear and pixel unshuffled and utilizes a multi-scale feature fusion approach to distil more robust spatial feature map *** the reconstruction phase,feature maps of varying resolutions are seamlessly integrated,and the extracted features are effectively merged using the Selective Kernel Fusion Module(SKFM).Empirical results demonstrate the comprehensive superiority of SKDRMNet across both synthetic and real rain and haze datasets.
Railway accidents are an under-scrutinised cause of death in India. Train accidents are caused by various consequences of collisions, derailments, signal errors and so on. Furthermore, when train derailments become di...
详细信息
Recently, Rumor Spreading over Online Social Media is found as one of the serious issue, which causes severe damage to society, organization and individuals. To control the rumor spread, rumor detection is found as on...
详细信息
The patient health prediction system is the most critical study in medical research. Several prediction models exist to predict the patient's health condition. However, a relevant result was not attained because o...
详细信息
In today's rapidly evolving network landscape, cybersecurity has become increasingly crucial. However, wireless sensor networks face unique challenges due to their limited resources and diverse composition, high c...
详细信息
INTRODUCTION: Cloud computing, a still emerging technology, allows customers to pay for services based on usage. It provides internet-based services, whilst virtualization optimizes a PC’s available resources. OBJECT...
详细信息
With the advent of the Web 3.0 era, the amount and types of data in the network have sharply increased, and the application scenarios of recommendation algorithms are continuously expanding. Location recommendation ha...
详细信息
Background & Need: The early detection of thoracic diseases and COVID-19 (coronavirus disease) significantly limits propagation and increases therapeutic outcomes. This article focuses on swiftly distinguishi...
详细信息
Background & Need: The early detection of thoracic diseases and COVID-19 (coronavirus disease) significantly limits propagation and increases therapeutic outcomes. This article focuses on swiftly distinguishing COVID-19 patients with 10 chronic thoracic illnesses from healthy examples. The death rates of COVID-19-confirmed patients are rising due to chronic thoracic illnesses. Method: To identify thoracic illnesses (Consolidation, Tuberculosis, Edema, Fibrosis, Hernia, Mass, Nodule, Plural-thickening, Pneumonia, Healthy) from X-ray images with COVID-19, we provide an ensemble-feature-fusion (FFT) deep learning (DL) model. 14,400 chest X-ray images (CXRI) of COVID-19 and other thoracic illnesses were obtained from five public sources and applied UNet-based data augmentation. High-quality images were intended to be provided under the CXR standard. To provide model parameters and feature extractors, four deep convolutional neural networks (CNNs) with a proprietary CapsNet as the backbone were employed. To generate the ensemble-fusion classifiers, we suggested five additional USweA (Unified Stacking weighted Averaging)-based comparative ensemble models as an alternative to depending solely on the findings of the single base model. Additionally, USweA enhanced the models' performance and reduced the base error-rate. USweA models were knowledgeable of the principles of multiple DL evaluations on distinct labels. Results: The results demonstrated that the feature-fusion strategy performed better than the standalone DL models in terms of overall classification effectiveness. According to study results, Thoracic-Net significantly improves COVID-19 context recognition for thoracic infections. It achieves superior results to existing CNNs, with a 99.75% accuracy, 97.89% precision, 98.69% recall, 98.27% F1-score, shallow 28 CXR zero-one loss, 99.27% ROC-AUC-score, 1.45% error rate, 0.9838 MCC, (0.98001, 0.99076) 95% CI, and 5.708 s to test individual CXR. This suggested USweA m
暂无评论