This research aims to develop a new approach to increase the safety and reliability of Autonomous Vehicle (AV) through the proposed risk assessment framework, supported by the trust evaluation approach derived from a ...
详细信息
Millions of people die from lung illness each year as a result of its rise in recent years. CXR imaging is one of the most widely used and reasonably priced diagnostic techniques for the diagnosis of many illnesses. U...
详细信息
Millions of people die from lung illness each year as a result of its rise in recent years. CXR imaging is one of the most widely used and reasonably priced diagnostic techniques for the diagnosis of many illnesses. Unfortunately, even for seasoned radiologists, accurately diagnosing sickness from Chest X-Rays (CXR) samples is challenging. To combat the pandemic, a reliable, affordable, and efficient way to diagnose lung disease has become essential. Consequently, a unique optimized Auto Encod-BI Long-Short Term Memory (Bi-LSTM) model is proposed in this research work. Pre-processing, segmentation, feature extraction, and multiple types of lung illness diagnosis are the four main stages of the suggested model. First, Laplacian filtering and Contrast Limited Adaptive Histogram Equalization (CLAHE) are used to pre-process the gathered CXR pictures. Next, the Region of Interest (ROI) from the previously processed images are recognized by means of the newly enhanced MobileNetV2. The new Self-Improved Slime Mould Algorithm (SI-SMA) is used to fine-tune the hyper-parameters of MobileNetV2 in order to precisely identify the afflicted locations. Based on the phenomenon of slime mould oscillation, the conventional Slime Mould Algorithm (SMA) model has been modified with the creation of the SI-SMA model. Next, characteristics like the Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) are taken out. Finally, a unique AutoEncod-BiLSTM Framework—which is divided into three categories—is shown to automate the process of identifying illnesses in CXR pictures: pneumonia, COVID-19, and normal. The autoencoder and Bi-LSTM are combined to create the suggested AutoEncod-BiLSTM model. The retrieved features are used to train the AutoEncod-BiLSTM Framework. Moreover, the proposed model enhanced the disease detection efficiency than the existing models and the disease detection accuracy of the proposed model is about 99.1%. Furthermore, the suggested model attains better
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwate...
详细信息
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwater Vehicle (AUV)-driven applications such as underwater terrain surveying. It has been observed that underwater images are not clear due to several factors such as low light, the presence of small particles, different levels of refraction of light, etc. Extracting high-quality features from these images to detect objects is a significant challenging task. To mitigate this challenge, MIRNet and the modified version of YOLOv3 namely Underwater-YOLOv3 (U-YOLOv3) is proposed. The MIRNet is a deep learning-based technology for enhancing underwater images. while using YOLOv3 for underwater object detection it lacks in detection of very small objects and huge-size objects. To address this problem proper anchor box size, quality feature aggregation technique, and during object classification image resizing is required. The proposed U-YOLOv3 has three unique features that help to work with the above specified issue like accurate anchor box determination using the K-means++ clustering algorithm, introduced Spatial Pyramid Pooling (SPP) layer during feature extraction which helps in feature aggregation, and added downsampling and upsampling to improve the detection rate of very large and very small size objects. The size of the anchor box is crucial in detecting objects of different sizes, SPP helps in aggregation of features, while down and upsampling changes sizes of objects during object detection. Precision, recall, F1-score and mAP are used as assessment metrics to assess proposed work. The proposed work compared with SSD, Tiny-YOLO, YOLOv2, YOLOv3, YOLOv4, YOLOv5, KPE-YOLOv5, YOLOv7, YOLOv8 and YOLOv9 single stage object detectors. The experiment on the Brackish and Trash ICRA19 datasets shows that our proposed method enhances the mean average precision for b
Emotions are a vital semantic part of human correspondence. Emotions are significant for human correspondence as well as basic for human–computer cooperation. Viable correspondence between people is possibly achieved...
详细信息
Air pollution is a significant threat to human health and the environment. Accurate air quality forecasting is essential for effective mitigation strategies, including public health advisories, emission control measur...
详细信息
Online offensive behaviour continues to rise with the increasing popularity and use of social media. Various techniques have been used to address this issue. However, most existing studies consider offensive content i...
详细信息
Pervasive Computing has become more personal with the widespread adoption of the Internet of Things(IoT)in our day-to-day *** emerging domain that encompasses devices,sensors,storage,and computing of personal use and ...
详细信息
Pervasive Computing has become more personal with the widespread adoption of the Internet of Things(IoT)in our day-to-day *** emerging domain that encompasses devices,sensors,storage,and computing of personal use and surroundings leads to Personal IoT(PIoT).PIoT offers users high levels of personalization,automation,and *** proliferation of PIoT technology has extended into society,social engagement,and the interconnectivity of PIoT objects,resulting in the emergence of the Social Internet of Things(SIoT).The combination of PIoT and SIoT has spurred the need for autonomous learning,comprehension,and understanding of both the physical and social *** research on PIoT is dedicated to enabling seamless communication among devices,striking a balance between observation,sensing,and perceiving the extended physical and social environment,and facilitating information ***,the virtualization of independent learning from the social environment has given rise to Artificial Social Intelligence(ASI)in PIoT ***,autonomous data communication between different nodes within a social setup presents various resource management challenges that require careful *** paper provides a comprehensive review of the evolving domains of PIoT,SIoT,and ***,the paper offers insightful modeling and a case study exploring the role of PIoT in post-COVID *** study contributes to a deeper understanding of the intricacies of PIoT and its various dimensions,paving the way for further advancements in this transformative field.
The boundaries and regions between individual classes in biomedical image classification are hazy and overlapping. These overlapping features make predicting the correct classification result for biomedical imaging da...
详细信息
The boundaries and regions between individual classes in biomedical image classification are hazy and overlapping. These overlapping features make predicting the correct classification result for biomedical imaging data a difficult diagnostic task. Thus, in precise classification, it is frequently necessary to obtain all necessary information before making a decision. This paper presents a novel deep-layered design architecture based on Neuro-Fuzzy-Rough intuition to predict hemorrhages using fractured bone images and head CT scans. To deal with data uncertainty, the proposed architecture design employs a parallel pipeline with rough-fuzzy layers. In this case, the rough-fuzzy function functions as a membership function, incorporating the ability to process rough-fuzzy uncertainty information. It not only improves the deep model's overall learning process, but it also reduces feature dimensions. The proposed architecture design improves the model's learning and self-adaptation capabilities. In experiments, the proposed model performed well, with training and testing accuracies of 96.77% and 94.52%, respectively, in detecting hemorrhages using fractured head images. The comparative analysis shows that the model outperforms existing models by an average of 2.6$\pm$0.90% on various performance metrics. IEEE
In this paper, we have discussed isogeny-based cryptography as a rather appealing option for post-quantum security. We provide analysis of current protocols like SIDH (Supersingular Isogeny Diffie-Hellman) and SIKE (S...
详细信息
Managing project management tools is manual and lacks specific integrations of the Large Language Model making the entire process of retrieval and feeding useful information time-consuming, prone to errors and ineffic...
详细信息
ISBN:
(数字)9798350395914
ISBN:
(纸本)9798350395921
Managing project management tools is manual and lacks specific integrations of the Large Language Model making the entire process of retrieval and feeding useful information time-consuming, prone to errors and inefficient. This paper is an innovative approach to enhance project management and collaboration by integrating OpenAI's AI with web-based tools, utilizing Prompt engineering. Team members interact through simple prompts, facilitating tasks such as assignment, tracking, and resource allocation to querying useful information from context in natural language using specific prompts. The web-based system ensures accessibility and real-time updates, incorporating Next JS for versatility and integration with different project management methodologies.
暂无评论