Artificial Intelligence (AI) is a transformative technology that can embed intelligence and human-like behavior into systems and devices. To develop smart, intelligent, and automated systems that address current needs...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Reduplication is a highly productive process in Bengali word formation, with significant implications for various natural language processing (NLP) applications, such as parts-of-speech tagging and sentiment analysis....
详细信息
With the diversification of space-based information network task requirements and the dramatic increase in demand, the efficient scheduling of various tasks in space-based information network becomes a new challenge. ...
详细信息
With the diversification of space-based information network task requirements and the dramatic increase in demand, the efficient scheduling of various tasks in space-based information network becomes a new challenge. To address the problems of a limited number of resources and resource heterogeneity in the space-based information network, we propose a bilateral pre-processing model for tasks and resources in the scheduling pre-processing stage. We use an improved fuzzy clustering method to cluster tasks and resources and design coding rules and matching methods to match similar categories to improve the clustering effect. We propose a space-based information network task scheduling strategy based on an ant colony simulated annealing algorithm for the problems of high latency of space-based information network communication and high resource dynamics. The strategy can efficiently complete the task and resource matching and improve the task scheduling performance. The experimental results show that our proposed task scheduling strategy has less task execution time and higher resource utilization than other algorithms under the same experimental conditions. It has significantly improved scheduling performance.
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context ...
详细信息
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context of IoT fog *** suggested framework,called"BlocFogSec",secures key management and data sharing through blockchain consensus and smart *** existing solutions,BlocFogSec utilizes two types of smart contracts for secure key exchange and data sharing,while employing a consensus protocol to validate transactions and maintain blockchain *** process and store data effectively at the network edge,the framework makes use of fog computing,notably reducing latency and raising *** successfully blocks unauthorized access and data breaches by restricting transactions to authorized *** addition,the framework uses a consensus protocol to validate and add transactions to the blockchain,guaranteeing data accuracy and *** compare BlocFogSec's performance to that of other models,a number of simulations are *** simulation results indicate that BlocFogSec consistently outperforms existing models,such as Security Services for Fog Computing(SSFC)and Blockchain-based Key management Scheme(BKMS),in terms of throughput(up to 5135 bytes per second),latency(as low as 7 ms),and resource utilization(70%to 92%).The evaluation also takes into account attack defending accuracy(up to 100%),precision(up to 100%),and recall(up to 99.6%),demonstrating BlocFogSec's effectiveness in identifying and preventing potential attacks.
Cloud storage auditing research is dedicated to solving the data integrity problem of outsourced storage on the cloud. In recent years, researchers have proposed various cloud storage auditing schemes using different ...
详细信息
Cloud storage auditing research is dedicated to solving the data integrity problem of outsourced storage on the cloud. In recent years, researchers have proposed various cloud storage auditing schemes using different techniques. While these studies are elegant in theory, they assume an ideal cloud storage model;that is, they assume that the cloud provides the storage and compute interfaces as required by the proposed schemes. However, this does not hold for mainstream cloud storage systems because these systems only provide read and write interfaces but not the compute interface. To bridge this gap, this work proposes a serverless computing-based cloud storage auditing system for existing mainstream cloud object storage. The proposed system leverages existing cloud storage auditing schemes as a basic building block and makes two adaptations. One is that we use the read interface of cloud object storage to support block data requests in a traditional cloud storage auditing scheme. Another is that we employ the serverless computing paradigm to support block data computation as traditionally required. Leveraging the characteristics of serverless computing, the proposed system realizes economical, pay-as-you-go cloud storage auditing. The proposed system also supports mainstream cloud storage upper layer applications(e.g., file preview) by not modifying the data formats when embedding authentication tags for later auditing. We prototyped and open-sourced the proposed system to a mainstream cloud service, i.e., Tencent Cloud. Experimental results show that the proposed system is efficient and promising for practical use. For 40 GB of data, auditing takes approximately 98 s using serverless computation. The economic cost is 120.48 CNY per year, of which serverless computing only accounts for 46%. In contrast, no existing studies reported cloud storage auditing results for real-world cloud services.
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,a...
详细信息
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised *** this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the ***,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd *** addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density *** experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained dev...
详细信息
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained devices is a key challenge for service providers. This is especially true when underlying edge infrastructures are fault and error-prone. In this paper, we propose a fault tolerance approach named DFGP, for enforcing mobile service fault-tolerance in MEC. It synthesizes a generative optimization network(GON) model for predicting resource failure and a deep deterministic policy gradient(DDPG) model for yielding preemptive migration *** show through extensive simulation experiments that DFGP is more effective in fault detection and guaranteeing quality of service, in terms of fault detection accuracy, migration efficiency, task migration time, task scheduling time,and energy consumption than other existing methods.
The modern universitycomputer lab and kindergarden through 12th grade classrooms require a centralized solution to efficiently manage a large number of desktops. The existing solutions either bring virtualization ove...
详细信息
The modern universitycomputer lab and kindergarden through 12th grade classrooms require a centralized solution to efficiently manage a large number of desktops. The existing solutions either bring virtualization overhead in runtime or requires loading a large image over 30 GB leading to an unacceptable network latency. In this work, we propose Troy which takes advantage of the differencing virtual hard disk techniques in Windows *** such, Troy only loads the modifications made on one machine to all other machines. Troy consists of two modules that are responsible to generate an initial image and merge a differencing image with its parent image, respectively. Specifically, we identify the key fields in the virtual hard disk image that links the differencing image and the parent image and find the modified blocks in the differencing images that should be used to replace the blocks in the parent image. We further design a lazy copy solution to reduce the I/O burden in image merging. We have implemented Troy on bare metal machines. The evaluation results show that the performance of Troy is comparable to the native implementation in Windows, without requiring the Windows environment.
暂无评论