Unmanned Combat Aerial Vehicles (UCAVs) are becoming a critical part of the military to automate complex missions with minimum risk and increased efficiency. Path planning is a necessary routine for UCAVs to guide the...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-m...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-making, has made automatic emotion recognition and examination of a significant feature in the field of psychiatric disease treatment and cure. The problem arises from the limited spatial resolution of EEG recorders. Predetermined quantities of electroencephalography (EEG) channels are used by existing algorithms, which combine several methods to extract significant data. The major intention of this study was to focus on enhancing the efficiency of recognizing emotions using signals from the brain through an experimental, adaptive selective channel selection approach that recognizes that brain function shows distinctive behaviors that vary from one individual to another individual and from one state of emotions to another. We apply a Bernoulli–Laplace-based Bayesian model to map each emotion from the scalp senses to brain sources to resolve this issue of emotion mapping. The standard low-resolution electromagnetic tomography (sLORETA) technique is employed to instantiate the source signals. We employed a progressive graph convolutional neural network (PG-CNN) to identify the sources of the suggested localization model and the emotional EEG as the main graph nodes. In this study, the proposed framework uses a PG-CNN adjacency matrix to express the connectivity between the EEG source signals and the matrix. Research on an EEG dataset of parents of an ASD (autism spectrum disorder) child has been utilized to investigate the ways of parenting of the child's mother and father. We engage with identifying the personality of parental behaviors when regulating the child and supervising his or her daily activities. These recorded datasets incorporated by the proposed method identify five emotions from brain source modeling, which significantly improves the accurac
Accurate and reliable wind power forecasting is of great importance for stable grid operation and advanced dispatch planning. Due to the complex, non-stationary, and highly volatile nature of wind power data, Transfor...
详细信息
As the use of big data and its potential benefits become more widespread, public and private organizations around the world have realized the imperative of incorporating comprehensive and robust technologies into thei...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and software engineering. Various deep learning techniques have been successfully employed to facilitate software engineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various software engineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in software engineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for software engineering tasks. We still lack surveys explaining the advances of subareas in software engineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based software engineering. It covers twelve major software engineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of software engineering, providing one survey covering as many subareas as possible in software engineering can help future research push forward the frontier of deep learning-based software engineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
Sentiment analysis can be used to identify if a text’s sentiment is neutral, positive, or negative. One type of natural language processing is sentiment analysis. An interdisciplinary field encompassing linguistics, ...
详细信息
This study examines the impact of environmental, social, and governance (ESG) factors on economic investment from a statistical perspective, aiming to develop a tested investment strategy that capitalizes on the conne...
详细信息
Muscle–computer interfaces are devices that can identify the meaning of human bioelectrical signals, such as surface electromyography (sEMG) signals. sEMG signals can be obtained from arm-worn sensors and can be used...
详细信息
This paper surveys some of the most important recent works related to micro-expression analysis. It includes discussions on algorithms for spotting and recognizing micro-expressions, their performances, databases, and...
详细信息
The recognition of individual activity has proven its importance in many application areas. Even after the pandemic crisis worldwide, the remote monitoring of human actions and their activities has increased a lot. In...
详细信息
暂无评论