The Internet of Medical Things (IoMT) brings advanced patient monitoring and predictive analytics to healthcare but also raises cybersecurity and data privacy issues. This paper introduces a deep-learning model for Io...
详细信息
The world of digitization is growing exponentially;data optimization, security of a network, and energy efficiency are becoming more prominent. The Internet of Things (IoT) is the core technology of modern society. Th...
详细信息
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual ex...
详细信息
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual experience and *** address this,the use of digital image recognition technology and deep learning algorithms has emerged as a promising approach for automating plant disease *** this paper,we propose a novel approach that utilizes a convolutional neural network(CNN)model in conjunction with Inception v3 to identify plant leaf *** research focuses on developing a mobile application that leverages this mechanism to identify diseases in plants and provide recommendations for overcoming specific *** models were trained using a dataset consisting of 80,848 images representing 21 different plant leaves categorized into 60 distinct *** rigorous training and evaluation,the proposed system achieved an impressive accuracy rate of 99%.This mobile application serves as a convenient and valuable advisory tool,providing early detection and guidance in real agricultural *** significance of this research lies in its potential to revolutionize plant disease detection and management *** automating the identification process through deep learning algorithms,the proposed system eliminates the subjective nature of expert-based diagnosis and reduces dependence on individual *** integration of mobile technology further enhances accessibility and enables farmers and agricultural practitioners to swiftly and accurately identify diseases in their crops.
Background: Collaborative Representation (CR) has been widely used in Single Image Super Resolution (SISR) with the assumption that Low-resolution (LR) and high-resolution (HR) features can be linearly represented by ...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly foc...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly focuses on gray-scale image processing, making it challenging to recognize color images. Additionally, the high power consumption of optoelectronic synapses, compared to the 10 fJ energy consumption of biological synapses, limits their broader application. To address these challenges, an energy-efficient NVS capable of color target recognition in a noisy environment was developed,utilizing a MoS2optoelectronic synapse with wavelength sensitivity. Benefiting from the distinct photon capture capabilities of 450, 535, and 650 nm light, the optoelectronic synapse exhibits wavelength-dependent synaptic plasticity, including excitatory postsynaptic current(EPSC), paired-pulse facilitation(PPF), and long-term plasticity(LTP). These properties can effectively mimic the visual memory and color discrimination functions of the human vision system. Results demonstrate that the NVS, based on MoS2optoelectronic synapses, can eliminate the color noise at the sensor level, increasing color image recognition accuracy from 50% to 90%. Importantly, the optoelectronic synapse operates at a low voltage spike of0.0005 V, consuming only 0.075 fJ per spike, surpassing the energy efficiency of both existing optoelectronic and biological synapses. This ultra-low power, color-sensitive device eliminates the need for color filters and offers great promise for future deployment in filter-free NVS.
Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and *** is well known that previous VPR ...
详细信息
Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and *** is well known that previous VPR algorithms emphasize the extraction and integration of general image features,while ignoring the mining of salient features that play a key role in the discrimination of VPR *** this end,this paper proposes a Domain-invariant information Extraction and Optimization Network(DIEONet)for *** core of the algorithm is a newly designed Domain-invariant information Mining Module(DIMM)and a Multi-sample Joint Triplet Loss(MJT Loss).Specifically,DIMM incorporates the interdependence between different spatial regions of the feature map in the cascaded convolutional unit group,which enhances the model’s attention to the domain-invariant static object *** Loss introduces the“joint processing of multiple samples”mechanism into the original triplet loss,and adds a new distance constraint term for“positive and negative”samples,so that the model can avoid falling into local optimum during *** demonstrate the effectiveness of our algorithm by conducting extensive experiments on several authoritative *** particular,the proposed method achieves the best performance on the TokyoTM dataset with a Recall@1 metric of 92.89%.
Wireless sensor networks (WSNs) are networks with many sensor nodes that are utilized for various purposes, including the military and medical. In hazardous circumstances, precise data aggregation and routing are esse...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
Cybersecurity is crucial in today’s interconnected world, as digital technologies are increasingly used in various sectors. The risk of cyberattacks targeting financial, military, and political systems has increased ...
详细信息
Heterogeneous Graph Neural Networks are an efficient and powerful tool for modeling graph structure data in recommendation systems. However, existing heterogeneous graph neural networks often fail to model the depende...
详细信息
暂无评论