Image captioning has gained increasing attention in recent *** characteristics found in input images play a crucial role in generating high-quality *** studies have used visual attention mechanisms to dynamically focu...
详细信息
Image captioning has gained increasing attention in recent *** characteristics found in input images play a crucial role in generating high-quality *** studies have used visual attention mechanisms to dynamically focus on localized regions of the input image,improving the effectiveness of identifying relevant image regions at each step of caption ***,providing image captioning models with the capability of selecting the most relevant visual features from the input image and attending to them can significantly improve the utilization of these ***,this leads to enhanced captioning network *** light of this,we present an image captioning framework that efficiently exploits the extracted representations of the *** framework comprises three key components:the Visual Feature Detector module(VFD),the Visual Feature Visual Attention module(VFVA),and the language *** VFD module is responsible for detecting a subset of the most pertinent features from the local visual features,creating an updated visual features ***,the VFVA directs its attention to the visual features matrix generated by the VFD,resulting in an updated context vector employed by the language model to generate an informative *** the VFD and VFVA modules introduces an additional layer of processing for the visual features,thereby contributing to enhancing the image captioning model’s *** the MS-COCO dataset,our experiments show that the proposed framework competes well with state-of-the-art methods,effectively leveraging visual representations to improve *** implementation code can be found here:https://***/althobhani/VFDICM(accessed on 30 July 2024).
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced *** management strategies(EMSs)that coordinate and control different energy sources ...
详细信息
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced *** management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle *** study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power *** DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action *** often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing ***,these algorithms suffer from low sample ***,these factors contribute to convergence difficulties,low learning efficiency,and *** address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience ***,the correspondingMarkovDecision Process(MDP)is ***,an EMSbased on the improvedDRLmodel is *** simulation experiments are conducted against rule-based,optimization-based,andDRL-based *** proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global *** the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 *** to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%
The traditional methods for analyzing environmental impact factors in urban road traffic accidents suffer from issues such as low recall, poor precision, and time-consuming processes. To address these challenges, a no...
详细信息
As the trend to use the latestmachine learning models to automate requirements engineering processes continues,security requirements classification is tuning into the most researched field in the software engineering ...
详细信息
As the trend to use the latestmachine learning models to automate requirements engineering processes continues,security requirements classification is tuning into the most researched field in the software engineering *** literature studies have proposed numerousmodels for the classification of security ***,adopting those models is constrained due to the lack of essential datasets permitting the repetition and generalization of studies employing more advanced machine learning ***,most of the researchers focus only on the classification of requirements with security *** did not consider other nonfunctional requirements(NFR)directly or indirectly related to *** has been identified as a significant research gap in security requirements *** major objective of this study is to propose a security requirements classification model that categorizes security and other relevant security *** use PROMISE_exp and DOSSPRE,the two most commonly used datasets in the software engineering *** proposed methodology consists of two *** the first step,we analyze all the nonfunctional requirements and their relation with security *** found 10 NFRs that have a strong relationship with security *** the second step,we categorize those NFRs in the security requirements *** proposedmethodology is a hybridmodel based on the ConvolutionalNeural Network(CNN)and Extreme Gradient Boosting(XGBoost)***,we evaluate the model by updating the requirement type column with a binary classification column in the dataset to classify the requirements into security and non-security *** performance is evaluated using four metrics:recall,precision,accuracy,and F1 Score with 20 and 28 epochs number and batch size of 32 for PROMISE_exp and DOSSPRE datasets and achieved 87.3%and 85.3%accuracy,*** proposed study shows an enhancement in metrics
This paper investigates the input-to-state stabilization of discrete-time Markov jump systems. A quantized control scheme that includes coding and decoding procedures is proposed. The relationship between the error in...
详细信息
The application of Artificial Intelligence (AI) in stock price prediction has demonstrated significant advancements, with Machine Learning and Deep Learning techniques proving highly efficient in this domain. Two wide...
详细信息
Current state-of-the-art QoS prediction methods face two main limitations. Firstly, most existing QoS prediction approaches are centralized, gathering all user-service invocation QoS records for training and optimizat...
详细信息
Clinical Electroencephalogram(EEG) devices are effective in hospitals, but for everyday monitoring, portable options are more accessible and convenient, albeit less accurate. In this research, the working of three por...
详细信息
Because of recent COVID-19 epidemic, the Internet-of-Medical-Things (IoMT) has acquired a significant impetus to diagnose patients remotely, regulate medical equipment, and track quarantined patients via smart electro...
详细信息
The emergence of various technologies such as terahertz communications,Reconfigurable Intelligent Surfaces(RIS),and AI-powered communication services will burden network operators with rising infrastructure ***,the Op...
详细信息
The emergence of various technologies such as terahertz communications,Reconfigurable Intelligent Surfaces(RIS),and AI-powered communication services will burden network operators with rising infrastructure ***,the Open Radio Access Network(O-RAN)has been introduced as a solution for growing financial and operational burdens in Beyond 5G(B5G)and 6G networks.O-RAN promotes openness and intelligence to overcome the limitations of traditional *** disaggregating conventional Base Band Units(BBUs)into O-RAN Distributed Units(O-DU)and O-RAN Centralized Units(O-CU),O-RAN offers greater flexibility for upgrades and network ***,this openness introduces new security challenges compared to traditional *** existing studies overlook these security requirements of the O-RAN *** gain deeper insights into the O-RAN system and security,this paper first provides an overview of the general O-RAN architecture and its diverse use cases relevant to B5G and 6G *** then delve into specifications of O-RAN security threats and requirements,aiming to mitigate security vulnerabilities *** providing a comprehensive understanding of O-RAN architecture,use cases,and security considerations,thisworkserves as a valuable resource for future research in O-RAN and its security.
暂无评论