Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging *** the boundary box location is not sufficiently accurate and it is di...
详细信息
Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging *** the boundary box location is not sufficiently accurate and it is difficult to distinguish overlapping and occluded objects,the authors propose a network model with a second-order term attention mechanism and occlusion ***,the backbone network is built on *** a method is designed for the feature extraction network based on an item-wise attention mechanism,which uses the filtered weighted feature vector to replace the original residual fusion and adds a second-order term to reduce the information loss in the process of fusion and accelerate the convergence of the ***,an objected occlusion regression loss function is studied to reduce the problems of missed detections caused by dense *** experimental results demonstrate that the authors’method achieved state-of-the-art performance without reducing the detection *** mAP@.5 of the method is 85.8%on the Foggy_cityscapes dataset and the mAP@.5 of the method is 97.8%on the KITTI dataset.
Bat Algorithm (BA) is a nature-inspired metaheuristic search algorithm designed to efficiently explore complex problem spaces and find near-optimal solutions. The algorithm is inspired by the echolocation behavior of ...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various re...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various resources on *** IoT-enabled models are restricted to resources and require crisp response,minimum latency,and maximum bandwidth,which are outside the *** was handled as a resource-rich solution to aforementioned *** high delay reduces the performance of the IoT enabled cloud platform,efficient utilization of task scheduling(TS)reduces the energy usage of the cloud infrastructure and increases the income of service provider via minimizing processing time of user ***,this article concentration on the design of an oppositional red fox optimization based task scheduling scheme(ORFOTSS)for IoT enabled cloud *** presented ORFO-TSS model resolves the problem of allocating resources from the IoT based cloud *** achieves the makespan by performing optimum TS procedures with various aspects of incoming *** designing of ORFO-TSS method includes the idea of oppositional based learning(OBL)as to traditional RFO approach in enhancing their efficiency.A wide-ranging experimental analysis was applied on the CloudSim *** experimental outcome highlighted the efficacy of the ORFO-TSS technique over existing approaches.
This research focuses on improving the Harris’Hawks Optimization algorithm(HHO)by tackling several of its shortcomings,including insufficient population diversity,an imbalance in exploration ***,and a lack of thoroug...
详细信息
This research focuses on improving the Harris’Hawks Optimization algorithm(HHO)by tackling several of its shortcomings,including insufficient population diversity,an imbalance in exploration ***,and a lack of thorough exploitation *** tackle these shortcomings,it proposes enhancements from three distinct perspectives:an initialization technique for populations grounded in opposition-based learning,a strategy for updating escape energy factors to improve the equilibrium between exploitation and exploration,and a comprehensive exploitation approach that utilizes variable neighborhood search along with mutation *** effectiveness of the Improved Harris Hawks Optimization algorithm(IHHO)is assessed by comparing it to five leading algorithms across 23 benchmark test *** findings indicate that the IHHO surpasses several contemporary algorithms its problem-solving ***,this paper introduces a feature selection method leveraging the IHHO algorithm(IHHO-FS)to address challenges such as low efficiency in feature selection and high computational costs(time to find the optimal feature combination and model response time)associated with high-dimensional *** analyses between IHHO-FS and six other advanced feature selection methods are conducted across eight *** results demonstrate that IHHO-FS significantly reduces the computational costs associated with classification models by lowering data dimensionality,while also enhancing the efficiency of feature ***,IHHO-FS shows strong competitiveness relative to numerous algorithms.
In permissionless blockchain systems, Proof of Work (PoW) is utilized to address the issues of double-spending and transaction starvation. When an attacker acquires more than 50% of the hash power of the entire networ...
详细信息
The Arduino-controlled radar systems constituting the fundamental elements of this RADAR system, an ultrasonic sensor and servo motor are employed. The fundamental operation of the system is to detect objects within t...
详细信息
Many researchers have preferred non-invasive techniques for recognizing the exact type of physiological abnormality in the vocal tract by training machine learning algorithms with feature descriptors extracted from th...
详细信息
Many researchers have preferred non-invasive techniques for recognizing the exact type of physiological abnormality in the vocal tract by training machine learning algorithms with feature descriptors extracted from the voice signal. However, until now, most techniques have been limited to classifying whether a voice is normal or abnormal. It is crucial that the trained Artificial Intelligence (AI) be able to identify the exact pathology associated with voice for implementation in a realistic environment. Another issue is the need to suppress the ambient noise that could be mixed up with the spectra of the voice. Current work proposes a robust, less time-consuming and non-invasive technique for the identification of pathology associated with a laryngeal voice signal. More specifically, a two-stage signal filtering approach that encompasses a score-based geometric approach and a glottal inverse filtering method is applied to the input voice signal. The aim here is to estimate the noise spectra, to regenerate a clean signal and finally to deliver a completely fundamental glottal flow-derived signal. For the next stage, clean glottal derivative signals are used in the formation of a novel fused-scalogram which is currently referred to as the "Combinatorial Transformative Scalogram (CTS)." The CTS is a time-frequency domain plot which is a combination of two time-frequency scalograms. There is a thorough investigation of the performance of the two individual scalograms as well as that of the CTS *** classification metrics are used to investigate performance, which are: sensitivity, mean accuracy, error, precision, false positive rate, specificity, Cohen’s kappa, Matthews Correlation Coefficient, and F1 score. Implementation of the VOice ICar fEDerico II (VOICED) standard database provided the highest mean accuracy of 94.12% with a sensitivity of 93.85% and a specificity of 97.96% against other existing techniques. The current method performed well despite the d
Cloud computing distributes task-parallel among the various *** with self-service supported and on-demand service have rapid *** these applications,cloud computing allocates the resources dynami-cally via the internet...
详细信息
Cloud computing distributes task-parallel among the various *** with self-service supported and on-demand service have rapid *** these applications,cloud computing allocates the resources dynami-cally via the internet according to user *** resource allocation is vital for fulfilling user *** contrast,improper resource allocations result to load imbalance,which leads to severe service *** cloud resources implement internet-connected devices using the protocols for storing,communi-cating,and *** extensive needs and lack of optimal resource allo-cating scheme make cloud computing more *** paper proposes an NMDS(Network Manager based Dynamic Scheduling)for achieving a prominent resource allocation scheme for the *** proposed system mainly focuses on dimensionality problems,where the conventional methods fail to address *** proposed system introduced three–threshold mode of task based on its size STT,MTT,LTT(small,medium,large task thresholding).Along with it,task mer-ging enables minimum energy consumption and response *** proposed NMDS is compared with the existing Energy-efficient Dynamic Scheduling scheme(EDS)and Decentralized Virtual Machine Migration(DVM).With a Network Manager-based Dynamic Scheduling,the proposed model achieves excellence in resource allocation compared to the other existing *** obtained results shows the proposed system effectively allocate the resources and achieves about 94%of energy efficient than the other *** evaluation metrics taken for comparison are energy consumption,mean response time,percentage of resource utilization,and migration.
Brain tumor diagnosis and treatment need segmentation, Precision automated segmentation of brain tumors is difficult due to their size, shape, unexpected placements, and fuzzy boundaries. U-Net is a popular medical pi...
详细信息
Algorithms for steganography are methods of hiding data transfers in media *** machine learning architectures have been presented recently to improve stego image identification performance by using spatial information...
详细信息
Algorithms for steganography are methods of hiding data transfers in media *** machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image *** with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for *** address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of *** Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or *** Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the *** WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods.
暂无评论