Graphs that are used to model real-world entities with vertices and relationships among entities with edges,have proven to be a powerful tool for describing real-world problems in *** most real-world scenarios,entitie...
详细信息
Graphs that are used to model real-world entities with vertices and relationships among entities with edges,have proven to be a powerful tool for describing real-world problems in *** most real-world scenarios,entities and their relationships are subject to constant *** that record such changes are called dynamic *** recent years,the widespread application scenarios of dynamic graphs have stimulated extensive research on dynamic graph processing systems that continuously ingest graph updates and produce up-to-date graph analytics *** the scale of dynamic graphs becomes larger,higher performance requirements are demanded to dynamic graph processing *** the massive parallel processing power and high memory bandwidth,GPUs become mainstream vehicles to accelerate dynamic graph processing ***-based dynamic graph processing systems mainly address two challenges:maintaining the graph data when updates occur(i.e.,graph updating)and producing analytics results in time(i.e.,graph computing).In this paper,we survey GPU-based dynamic graph processing systems and review their methods on addressing both graph updating and graph *** comprehensively discuss existing dynamic graph processing systems on GPUs,we first introduce the terminologies of dynamic graph processing and then develop a taxonomy to describe the methods employed for graph updating and graph *** addition,we discuss the challenges and future research directions of dynamic graph processing on GPUs.
Graph Neural Networks (GNNs), which gained popularity recently, is facing the problem of reducing the cost of acquiring large datasets. Although a portion of the work combining GNN with active learning has been modera...
详细信息
Multi-Criteria Recommender Systems (MCRSs) are a promising method that takes into account several elements of the user's preferences in order to improve recommendation accuracy. However, most existing research has...
详细信息
With the rise of digital financial systems, cryptocurrencies have become a prime example of blockchain's potential. This paper presents a deep learning approach targeting the time series data of Bitcoin, which is ...
详细信息
A theoretical methodology is suggested for finding the malaria parasites’presence with the help of an intelligent hyper-parameter tuned Deep Learning(DL)based malaria parasite detection and classification(HPTDL-MPDC)...
详细信息
A theoretical methodology is suggested for finding the malaria parasites’presence with the help of an intelligent hyper-parameter tuned Deep Learning(DL)based malaria parasite detection and classification(HPTDL-MPDC)in the smear images of human peripheral *** existing approaches fail to predict the malaria parasitic features and reduce the prediction *** trained model initiated in the proposed system for classifying peripheral blood smear images into the non-parasite or parasite classes using the available online *** Adagrad optimizer is stacked with the suggested pre-trained Deep Neural Network(DNN)with the help of the contrastive divergence method to *** features are extracted from the images in the proposed system to train the DNN for initializing the visible *** smear images show the concatenated feature to be utilized as the feature vector in the proposed ***,hyper-parameters are used to fine-tune DNN to calculate the class labels’*** suggested system outperforms more modern methodologies with an accuracy of 91%,precision of 89%,recall of 93%and F1-score of 91%.The HPTDL-MPDC has the primary application in detecting the parasite of malaria in the smear images of human peripheral blood.
Image captioning involves generating a descriptive text that encapsulates the visual information contained in an image. This ppt proposes a deep learning model for image captioning that utilizes a Vision Transformer (...
详细信息
Twitter plays an important role in understanding the consumer sentiment about the products. The advanced analytics and Natural Language Processing (NLP) are used to extract actionable insights from this data and usefu...
详细信息
The microservices are continuously growing in domains of communication using cloud and AI. Access to microservice can be done using any respective cloud environment. Access microservices using cloud require multiple c...
详细信息
Regularized system identification has become the research frontier of system identification in the past *** related core subject is to study the convergence properties of various hyper-parameter estimators as the samp...
详细信息
Regularized system identification has become the research frontier of system identification in the past *** related core subject is to study the convergence properties of various hyper-parameter estimators as the sample size goes to *** this paper,we consider one commonly used hyper-parameter estimator,the empirical Bayes(EB).Its convergence in distribution has been studied,and the explicit expression of the covariance matrix of its limiting distribution has been ***,what we are truly interested in are factors contained in the covariance matrix of the EB hyper-parameter estimator,and then,the convergence of its covariance matrix to that of its limiting distribution is *** general,the convergence in distribution of a sequence of random variables does not necessarily guarantee the convergence of its covariance ***,the derivation of such convergence is a necessary complement to our theoretical analysis about factors that influence the convergence properties of the EB hyper-parameter *** this paper,we consider the regularized finite impulse response(FIR)model estimation with deterministic inputs,and show that the covariance matrix of the EB hyper-parameter estimator converges to that of its limiting ***,we run numerical simulations to demonstrate the efficacy of ourtheoretical results.
Traffic flow prediction plays a key role in the construction of intelligent transportation ***,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very *** of the existing studies ar...
详细信息
Traffic flow prediction plays a key role in the construction of intelligent transportation ***,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very *** of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between ***,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial *** paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic *** combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic *** on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms.
暂无评论