Large-scale graphs usually exhibit global sparsity with local cohesiveness,and mining the representative cohesive subgraphs is a fundamental problem in graph *** k-truss is one of the most commonly studied cohesive su...
详细信息
Large-scale graphs usually exhibit global sparsity with local cohesiveness,and mining the representative cohesive subgraphs is a fundamental problem in graph *** k-truss is one of the most commonly studied cohesive subgraphs,in which each edge is formed in at least k 2 triangles.A critical issue in mining a k-truss lies in the computation of the trussness of each edge,which is the maximum value of k that an edge can be in a *** works mostly focus on truss computation in static graphs by sequential ***,the graphs are constantly changing dynamically in the real *** study distributed truss computation in dynamic graphs in this *** particular,we compute the trussness of edges based on the local nature of the k-truss in a synchronized node-centric distributed *** decomposing the trussness of edges by relying only on local topological information is possible with the proposed distributed decomposition ***,the distributed maintenance algorithm only needs to update a small amount of dynamic information to complete the *** experiments have been conducted to show the scalability and efficiency of the proposed algorithm.
Individuals who are deaf often utilize sign language for communication. In Sign Language, the symbols or motions are arranged grammatically. Every motion is referred to as a sign. Indian Sign Language Recognition usin...
详细信息
Prediction sets capture uncertainty by predicting sets of labels rather than individual labels, enabling downstream decisions to conservatively account for all plausible outcomes. Conformal inference algorithms constr...
详细信息
Effective monitoring of water quality remains a problem, in real-time contamination detection and prediction. Despite advancements in the sector, many existing approaches continue to rely on labor-intensive laboratory...
详细信息
作者:
Kapse, RishikeshGourshettiwar, Palash
Faculty of Engineering and Technology Dept. of Artificial Intelligence and Data Science Maharashtra Wardha India
Faculty of Engineering and Technology Dept. of Computer Science And Medical Engineering Maharashtra Wardha India
This essay's primary focus is on Google Cloud's use in healthcare and how it affects data management, teamwork, and cost-effectiveness. With a focus on Google Cloud, which improves the processing, storing, and...
详细信息
In solving multi-objective vehicle routing problems with time windows (MOVRPTW),most existing algorithms focus on the optimization of a single problem formulation. However,little effort has been devoted to exploiting ...
详细信息
In solving multi-objective vehicle routing problems with time windows (MOVRPTW),most existing algorithms focus on the optimization of a single problem formulation. However,little effort has been devoted to exploiting valuable knowledge from the alternate formulations of MOVRPTW for better optimization performance. Aiming at this insufficiency,this study proposes a decomposition-based multi-objective multiform evolutionary algorithm (MMFEA/D),which performs the evolutionary search on multiple alternate formulations of MOVRPTW simultaneously to complement each other. In particular,the main characteristics of MMFEA/D are three folds. First,a multiform construction (MFC) strategy is adopted to construct multiple alternate formulations,each of which is formulated by grouping several adjacent subproblems based on the decomposition of MOVRPTW. Second,a transfer reproduction (TFR) mechanism is designed to generate offspring for each formulation via transferring promising solutions from other formulations,making that the useful traits captured from different formulations can be shared and leveraged to guide the evolutionary search. Third,an adaptive local search (ALS) strategy is developed to invest search effort on different alternate formulations as per their usefulness for MOVRPTW,thus facilitating the efficient allocation of computational resources. Experimental studies have demonstrated the superior performance of MMFEA/D on the classical Solomon instances and the real-world instances.
We study the k-facility location games with optional preferences on the line. In the games, each strategic agent has a public location preference on the k facility locations and a private optional preference on the pr...
The crime monitoring system is a unique and authentic project which functions with the concepts of block chain language. Blockchain technology has the potential to revolutionize the management of criminal records by p...
详细信息
Nowadays online news websites are one of the quickest ways to get information. However, the credibility of news from these sources is sometimes questioned. One common problem with online news is the prevalence of clic...
详细信息
Nowadays online news websites are one of the quickest ways to get information. However, the credibility of news from these sources is sometimes questioned. One common problem with online news is the prevalence of clickbait. Clickbait uses exaggerated headlines to lure people to click the suspected link, but the content often disappoints the reader and degrades user experience it may also hamper public emotions. The proposed work aims to examine diverse set of models for clickbait detection. The models are formed by integration of Machine learning (ML) and Ensemble learning methods (EL) with Term Frequency and Inverse Document Frequency (TF-IDF) & Embedding technique. Five ML and three EL are analysed &compared. Random Forest along with TF-IDF gave the best results of 85%. The resultant model shows significant improvements with a minimal false-positives.
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected *** c...
详细信息
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected *** computing(EC)is promising for FS owing to its powerful search ***,in traditional EC-based methods,feature subsets are represented via a length-fixed individual *** is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training *** work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional *** LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space ***,a dominance-based local search method is employed for further *** experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms.
暂无评论