This study is presented to investigate the influence of the neutrosophic (NS) domain on the performance of the most common machine learning (ML) models. Specifically, it evaluates the effectiveness of Random Forest (R...
详细信息
作者:
Sophatsathit, Peraphon
Department of Mathematics and Computer Science Faculty of Science Chulalongkorn University Bangkok Thailand
This research proposes a Biological-like Architecture for Software Systems (BASS) that make up of software components. The design principle is to mimic the simplicity of uni-cellular life form as fixed-sized blocks li...
详细信息
This paper presents a novel image-level anomaly detection control method for defect inspection, which comprises featureextraction from high-dimensional data and feature-learning to analyze the observed patterns. we fo...
详细信息
Named in-network computing service (NICS) is a potential computing paradigm emerged recently. Benefitted from the characteristics of named addressing and routing, NICS can be flexibly deployed on NDN router side and p...
详细信息
Privacy-preserving k-nearest neighbor (PPkNN) classification for multiple clouds enables categorizing queried data into a class in keeping with data privacy, where the database and key servers jointly perform cryptogr...
详细信息
The implementation of enterprise architecture (EA) is no longer exclusive to large corporations;its principles have been adapted for various organizations, including small and medium-sized enterprises (SMEs) and indus...
详细信息
Graph neural networks have proven their effectiveness for user-item interaction graph collaborative filtering. However, most of the existing recommendation models highly depended on abundant and high-quality datasets ...
详细信息
In this paper, we investigate the influence of various factors, such as programming language, testing environment, and input data, on the accuracy of algorithm execution measurements. To conduct this study, we used th...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled it easier to create realistic synthetic and imitative speech, making audio Deepfakes a common and potentially dangerous form of deception. Well-known people, like politicians and celebrities, are often targeted. They get tricked into saying controversial things in fake recordings, causing trouble on social media. Even kids’ voices are cloned to scam parents into ransom payments, etc. Therefore, developing effective algorithms to distinguish Deepfake audio from real audio is critical to preventing such frauds. Various Machine learning (ML) and Deep learning (DL) techniques have been created to identify audio Deepfakes. However, most of these solutions are trained on datasets in English, Portuguese, French, and Spanish, expressing concerns regarding their correctness for other languages. The main goal of the research presented in this paper is to evaluate the effectiveness of deep learning neural networks in detecting audio Deepfakes in the Urdu language. Since there’s no suitable dataset of Urdu audio available for this purpose, we created our own dataset (URFV) utilizing both genuine and fake audio recordings. The Urdu Original/real audio recordings were gathered from random youtube podcasts and generated as Deepfake audios using the RVC model. Our dataset has three versions with clips of 5, 10, and 15 seconds. We have built various deep learning neural networks like (RNN+LSTM, CNN+attention, TCN, CNN+RNN) to detect Deepfake audio made through imitation or synthetic techniques. The proposed approach extracts Mel-Frequency-Cepstral-Coefficients (MFCC) features from the audios in the dataset. When tested and evaluated, Our models’ accuracy across datasets was noteworthy. 97.78% (5s), 98.89% (10s), and 98.33% (15s) were remarkable results for the RNN+LSTM
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems,...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, and selfdriving capabilities for improved system performance. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
暂无评论