App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
With the diversification of space-based information network task requirements and the dramatic increase in demand, the efficient scheduling of various tasks in space-based information network becomes a new challenge. ...
详细信息
With the diversification of space-based information network task requirements and the dramatic increase in demand, the efficient scheduling of various tasks in space-based information network becomes a new challenge. To address the problems of a limited number of resources and resource heterogeneity in the space-based information network, we propose a bilateral pre-processing model for tasks and resources in the scheduling pre-processing stage. We use an improved fuzzy clustering method to cluster tasks and resources and design coding rules and matching methods to match similar categories to improve the clustering effect. We propose a space-based information network task scheduling strategy based on an ant colony simulated annealing algorithm for the problems of high latency of space-based information network communication and high resource dynamics. The strategy can efficiently complete the task and resource matching and improve the task scheduling performance. The experimental results show that our proposed task scheduling strategy has less task execution time and higher resource utilization than other algorithms under the same experimental conditions. It has significantly improved scheduling performance.
The use of generative adversarial network(GAN)-based models for the conditional generation of image semantic segmentation has shown promising results in recent ***,there are still some limitations,including limited di...
详细信息
The use of generative adversarial network(GAN)-based models for the conditional generation of image semantic segmentation has shown promising results in recent ***,there are still some limitations,including limited diversity of image style,distortion of detailed texture,unbalanced color tone,and lengthy training *** address these issues,we propose an asymmetric pre-training and fine-tuning(APF)-GAN model.
A sustainably governed water-ecosystem at village-level is crucial for the community's well-being. It requires understanding natures’ limits to store and yield water and balance it with the stakeholders’ needs, ...
详细信息
Portable document formats (PDFs) are widely used for document exchange due to their widespread usage and versatility. However, PDFs are highly vulnerable to malware attacks, which pose significant security risks. Exis...
详细信息
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained dev...
详细信息
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained devices is a key challenge for service providers. This is especially true when underlying edge infrastructures are fault and error-prone. In this paper, we propose a fault tolerance approach named DFGP, for enforcing mobile service fault-tolerance in MEC. It synthesizes a generative optimization network(GON) model for predicting resource failure and a deep deterministic policy gradient(DDPG) model for yielding preemptive migration *** show through extensive simulation experiments that DFGP is more effective in fault detection and guaranteeing quality of service, in terms of fault detection accuracy, migration efficiency, task migration time, task scheduling time,and energy consumption than other existing methods.
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context ...
详细信息
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context of IoT fog *** suggested framework,called"BlocFogSec",secures key management and data sharing through blockchain consensus and smart *** existing solutions,BlocFogSec utilizes two types of smart contracts for secure key exchange and data sharing,while employing a consensus protocol to validate transactions and maintain blockchain *** process and store data effectively at the network edge,the framework makes use of fog computing,notably reducing latency and raising *** successfully blocks unauthorized access and data breaches by restricting transactions to authorized *** addition,the framework uses a consensus protocol to validate and add transactions to the blockchain,guaranteeing data accuracy and *** compare BlocFogSec's performance to that of other models,a number of simulations are *** simulation results indicate that BlocFogSec consistently outperforms existing models,such as Security Services for Fog Computing(SSFC)and Blockchain-based Key Management Scheme(BKMS),in terms of throughput(up to 5135 bytes per second),latency(as low as 7 ms),and resource utilization(70%to 92%).The evaluation also takes into account attack defending accuracy(up to 100%),precision(up to 100%),and recall(up to 99.6%),demonstrating BlocFogSec's effectiveness in identifying and preventing potential attacks.
Voice pathology detection (VPD) aims to accurately identify voice impairments by analyzing speech signals. This study proposes models based on deep learning (DL) for binary classification to distinguish between health...
详细信息
This paper presents a novel approach for generating intricate Batik motifs using a modified Diffusion-Generative Adversarial Network (Diffusion-GAN) augmented with StyleGAN2-Ada. Motivated by the rich cultural heritag...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of informat...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of information regarding lotus *** current study introduced the concept of smart learning in this setting to increase interest and motivation for *** neural networks(CNNs)were used for the classification of lotus plant species,for use in the development of a mobile application to display details about each *** scope of the study was to classify 11 species of lotus plants using the proposed CNN model based on different techniques(augmentation,dropout,and L2)and hyper parameters(dropout and epoch number).The expected outcome was to obtain a high-performance CNN model with reduced total parameters compared to using three different pre-trained CNN models(Inception V3,VGG16,and VGG19)as *** performance of the model was presented in terms of accuracy,F1-score,precision,and recall *** results showed that the CNN model with the augmentation,dropout,and L2 techniques at a dropout value of 0.4 and an epoch number of 30 provided the highest testing accuracy of *** best proposed model was more accurate than the pre-trained CNN models,especially compared to Inception *** addition,the number of total parameters was reduced by approximately 1.80–2.19 *** findings demonstrated that the proposed model with a small number of total parameters had a satisfactory degree of classification accuracy.
暂无评论