Emerging technologies of Agriculture 4.0 such as the Internet of Things (IoT), Cloud Computing, Artificial Intelligence (AI), and 5G network services are being rapidly deployed to address smart farming implementation-...
详细信息
This paper investigates the impact of loop unrolling on CUDA matrix multiplication operations' performance across NVIDIA GPUs. We benchmarked both basic and unrolled kernels with varying unroll factors (2, 4, 8, a...
详细信息
Cloud Computing (CC) is widely adopted in sectors like education, healthcare, and banking due to its scalability and cost-effectiveness. However, its internet-based nature exposes it to cyber threats, necessitating ad...
详细信息
This paper improves the performance of linear prediction (LP) in precise spectral estimation of bone-conducted (BC) speech. Inherently, BC speech contains a wide spectral dynamic range that causes ill conditioning in ...
详细信息
A systematic review of metaheuristic Algorithms for energy-efficient task offloading in edge computing is provided. The Grey Wolf Optimizer (GWO) is explored as a promising approach for reducing energy consumption. Fu...
详细信息
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and gener...
详细信息
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and generalization to real rain *** this paper,we propose a deep residual channel attention network(DeRCAN)for *** channel attention mechanism is able to capture the inherent properties of the feature space and thus facilitates more accurate estimations of structures and details for image *** addition,we further propose an unsupervised learning approach to better solve real rain images based on the proposed *** qualitative and quantitative evaluation results on both synthetic and real-world images demonstrate that the proposed DeRCAN performs favorably against state-of-the-art methods.
Accurately detecting traffic anomalies becomes increasingly crucial in network management. Algorithms that model the traffic data as a matrix suffers from low detection accuracy, while the work using the tensor model ...
详细信息
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is...
详细信息
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific information. In Japan's earthquake magnitude dataset, there is a chance of a high imbalance concerning the earthquakes above strong impact. This imbalance causes a high prediction error while training advanced machine learning or deep learning models. In this work, Conditional Tabular Generative Adversarial Networks (CTGAN), a deep machine learning tool, is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information. The result obtained using actual and mixed (synthetic and actual) datasets will be used for training the stacked ensemble magnitude prediction model, MagPred, designed specifically for this study. There are 13295, 3989, and 1710 records designated for training, testing, and validation. The mean absolute error of the test dataset for single station magnitude detection using early three, four, and five seconds of P wave are 0.41, 0.40, and 0.38 MJMA. The study demonstrates that the Generative Adversarial Networks (GANs) can provide a good result for single-station magnitude prediction. The study can be effective where less seismic data is available. The study shows that the machine learning method yields better magnitude detection results compared with the several regression models. The multi-station magnitude prediction study has been conducted on prominent Osaka, Off Fukushima, and Kumamoto earthquakes. Furthermore, to validate the performance of the model, an inter-region study has been performed on the earthquakes of the India or Nepal region. The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods. This has a high potential
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of...
详细信息
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of distinguishing between truthful and deceptive *** news,a prevalent issue,particularly on social media,complicates the assessment of news *** pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources,creating confusion and polarizing *** the volume of information grows,individuals increasingly struggle to discern credible content from false narratives,leading to widespread misinformation and potentially harmful *** numerous methodologies proposed for fake news detection,including knowledge-based,language-based,and machine-learning approaches,their efficacy often diminishes when confronted with high-dimensional datasets and data riddled with noise or *** study addresses this challenge by evaluating the synergistic benefits of combining feature extraction and feature selection techniques in fake news *** employ multiple feature extraction methods,including Count Vectorizer,Bag of Words,Global Vectors for Word Representation(GloVe),Word to Vector(Word2Vec),and Term Frequency-Inverse Document Frequency(TF-IDF),alongside feature selection techniques such as Information Gain,Chi-Square,Principal Component Analysis(PCA),and Document *** comprehensive approach enhances the model’s ability to identify and analyze relevant features,leading to more accurate and effective fake news *** findings highlight the importance of a multi-faceted approach,offering a significant improvement in model accuracy and ***,the study emphasizes the adaptability of the proposed ensemble model across diverse datasets,reinforcing its potential for broader application in real-world *** introduce a pioneering ensemble
Procedural content generation uses algorithmic techniques to create large amounts of new content for games at much lower production costs. To improve its quality, in newer approaches, procedural content generation uti...
详细信息
Procedural content generation uses algorithmic techniques to create large amounts of new content for games at much lower production costs. To improve its quality, in newer approaches, procedural content generation utilizes machine learning. However, these methods usually require expensive collection of large amounts of data, as well as the development and training of fairly complex learning models, which can be both extremely time-consuming and expensive. The core of our research is to explore whether we can lower the barrier to the use of personalized procedural content generation through a more practical and generalizable approach with large language models. Matching game content to player preferences benefits both players, by enhancing enjoyment, and developers, who rely on player satisfaction for monetization. Therefore, this paper introduces a new method for personalization by using large language models to suggest levels based on ongoing gameplay data from each player. We compared the levels generated using our approach with levels generated with more traditional procedural generation techniques. Our easily reproducible method has proven viable in a production setting and outperformed levels generated by traditional methods in two aspects-the player's rating of levels and the probability that a player will not quit the game mid-level. IEEE
暂无评论