This paper improves the ill-condition of bone-conducted (BC) speech signal by reducing the eigenvalue expansion. BC speech commonly contains a large spectral dynamic range that causes ill-condition for the classical l...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limi...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limited maneuvering space, these carefully positioned cameras often struggle to provide effective visual observations during manipulation. Taking inspiration from human capabilities, we introduce a novel RL-based dual-arm active visual-guided manipulation model(DAVMM), which simultaneously infers “eye” actions and “hand” actions for two separate robotic arms(referred to as the vision-arm and the worker-arm) based on current observations, empowering the robot with the ability to actively perceive and interact with its environment. To handle the extensive redundant observation-action space, we propose a decouplable target-centric reward paradigm to offer stable guidance for the training process. For making fine-grained manipulation action decisions, alongside a global scene image encoder, we utilize an independent encoder to extract local target texture features,enabling the simultaneous acquisition of both global and detailed local information. Additionally, we employ residual-RL and curriculum learning techniques to further enhance our model's sample efficiency and training stability. We conducted comparative experiments and analyses of DAVMM against a set of strong baselines on three occluded and narrow-space manipulation tasks. DAVMM notably improves the success rates across all manipulation tasks and showcases rapid learning capabilities.
In the realm of deep learning, the prevalence of models with large number of parameters poses a significant challenge for low computation device. Critical influence of model size, primarily governed by weight paramete...
详细信息
Advancements in smart applications highlight the need for increased processing and storage capacity at Smart Devices (SDs). To tackle this, Edge computing (EC) is enabled to offload SD workloads to distant edge server...
详细信息
IoT devices rely on authentication mechanisms to render secure message *** data transmission,scalability,data integrity,and processing time have been considered challenging aspects for a system constituted by IoT *** ...
详细信息
IoT devices rely on authentication mechanisms to render secure message *** data transmission,scalability,data integrity,and processing time have been considered challenging aspects for a system constituted by IoT *** application of physical unclonable functions(PUFs)ensures secure data transmission among the internet of things(IoT)devices in a simplified network with an efficient time-stamped *** paper proposes a secure,lightweight,cost-efficient reinforcement machine learning framework(SLCR-MLF)to achieve decentralization and security,thus enabling scalability,data integrity,and optimized processing time in IoT *** has been integrated into SLCR-MLF to improve the security of the cluster head node in the IoT platform during transmission by providing the authentication service for device-to-device *** IoT network gathers information of interest from multiple cluster members selected by the proposed *** addition,the software-defined secured(SDS)technique is integrated with SLCR-MLF to improve data integrity and optimize processing time in the IoT *** analysis shows that the proposed framework outperforms conventional methods regarding the network’s lifetime,energy,secured data retrieval rate,and performance *** enabling the proposed framework,number of residual nodes is reduced to 16%,energy consumption is reduced by up to 50%,almost 30%improvement in data retrieval rate,and network lifetime is improved by up to 1000 msec.
Alzheimer’s disease(AD)is a significant challenge in modern healthcare,with early detection and accurate staging remaining critical priorities for effective *** Deep Learning(DL)approaches have shown promise in AD di...
详细信息
Alzheimer’s disease(AD)is a significant challenge in modern healthcare,with early detection and accurate staging remaining critical priorities for effective *** Deep Learning(DL)approaches have shown promise in AD diagnosis,existing methods often struggle with the issues of precision,interpretability,and class *** study presents a novel framework that integrates DL with several eXplainable Artificial Intelligence(XAI)techniques,in particular attention mechanisms,Gradient-Weighted Class Activation Mapping(Grad-CAM),and Local Interpretable Model-Agnostic Explanations(LIME),to improve bothmodel interpretability and feature *** study evaluates four different DL architectures(ResMLP,VGG16,Xception,and Convolutional Neural Network(CNN)with attention mechanism)on a balanced dataset of 3714 MRI brain scans from patients aged 70 and *** proposed CNN with attention model achieved superior performance,demonstrating 99.18%accuracy on the primary dataset and 96.64% accuracy on the ADNI dataset,significantly advancing the state-of-the-art in AD *** ability of the framework to provide comprehensive,interpretable results through multiple visualization techniques while maintaining high classification accuracy represents a significant advancement in the computational diagnosis of AD,potentially enabling more accurate and earlier intervention in clinical settings.
People may now receive and share information more quickly and easily than ever due to the widespread use of mobile networked devices. However, this can occasionally lead to the spread of false information. Such inform...
详细信息
Brain tumors are ranked highly among the leading causes of cancer-related fatalities. Precise segmentation and quantitative assessment of brain tumors are crucial for effective diagnosis and treatment planning. Howeve...
详细信息
The Computational Visual Media(CVM)conference series is intended to provide a prominent international forum for exchanging innovative research ideas and significant computational methodologies that either underpin or ...
详细信息
The Computational Visual Media(CVM)conference series is intended to provide a prominent international forum for exchanging innovative research ideas and significant computational methodologies that either underpin or apply visual media.
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
暂无评论