Federated Class-Incremental Learning (FCIL) aims to design privacy-preserving collaborative training methods to continuously learn new classes from distributed datasets. In these scenarios, federated clients face the ...
详细信息
The intelligent dialogue system, aiming at communicating with humans harmoniously with natural language, is brilliant for promoting the advancement of human-machine interaction in the era of artificial intelligence. W...
详细信息
Plasma therapy is an extensively used treatment for critically unwell *** this procedure,a legitimate plasma donor who can continue to supply plasma after healing is ***,significant dangers are associated with supply ...
详细信息
Plasma therapy is an extensively used treatment for critically unwell *** this procedure,a legitimate plasma donor who can continue to supply plasma after healing is ***,significant dangers are associated with supply management,such as the ambiguous provenance of plasma and the spread of infected or subpar blood into medicinal ***,from an ideological standpoint,less powerful people may be exploited throughout the contribution ***,there is a danger to the logistics system because there are now just some plasma *** research intends to investigate the blockchain-based solution for blood plasma to facilitate authentic plasma *** parameters,including electronic identification,chain code,and certified ledgers,have the potential to exert a substantial,profound influence on the distribution and implementation process of blood *** understand the practical ramifications of blockchain,the current study provides a proof of concept approach that aims to simulate the procedural code of modern plasma distribution ecosystems using a blockchain-based *** agent-based modeling used in the testing and evaluation mimics the supply chain to assess the blockchain’s feasibility,advantages,and constraints for the plasma.
Ransomware is one of the most advanced malware which uses high computer resources and services to encrypt system data once it infects a system and causes large financial data losses to the organization and individuals...
详细信息
Utilizing interpolation techniques (IT) within reversible data hiding (RDH) algorithms presents the advantage of a substantial embedding capacity. Nevertheless, prevalent algorithms often straightforwardly embed confi...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consistin...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consisting of multiple,simple metarelations must be driven by domain *** sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this ***,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given ***,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node ***,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link ***,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the *** experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model.
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion...
详细信息
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
A multi-secret image sharing (MSIS) scheme facilitates the secure distribution of multiple images among a group of participants. Several MSIS schemes have been proposed with a (n, n) structure that encodes secret...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in convention...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)*** Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent *** this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN *** model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant *** adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack *** proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble *** proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in *** provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving *** comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing *** results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost.
In the times of advanced generative artificial intelligence, distinguishing truth from fallacy and deception has become a critical societal challenge. This research attempts to analyze the capabilities of large langua...
详细信息
暂无评论