We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this *** propose an iterative two-grid algorithm,in which a nonlin...
详细信息
We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this *** propose an iterative two-grid algorithm,in which a nonlinear problem is first solved on the coarse space,and then a symmetric positive definite problem is solved on the fine *** main contribution in this paper is to establish a first convergence analysis,which requires dealing with four coupled error estimates,for the iterative two-grid *** also present some numerical experiments to confirm the efficiency of the proposed algorithm.
Singular value decomposition (SVD) based image authentication has widespread applications for digital media protection including forensic and medical domains due to the high stability and robustness of singular values...
详细信息
Current state-of-the-art QoS prediction methods face two main limitations. Firstly, most existing QoS prediction approaches are centralized, gathering all user-service invocation QoS records for training and optimizat...
详细信息
Temporal ontologies allow to represent not only concepts,their properties,and their relationships,but also time-varying information through explicit versioning of definitions or through the four-dimensional perduranti...
详细信息
Temporal ontologies allow to represent not only concepts,their properties,and their relationships,but also time-varying information through explicit versioning of definitions or through the four-dimensional perdurantist *** are widely used to formally represent temporal data semantics in several applications belonging to different fields(e.g.,Semantic Web,expert systems,knowledge bases,big data,and artificial intelligence).They facilitate temporal knowledge representation and discovery,with the support of temporal data querying and ***,there is no standard or consensual temporal ontology query *** a previous work,we have proposed an approach namedτJOWL(temporal OWL 2 from temporal JSON,where OWL 2 stands for"OWL 2 Web Ontology Language"and JSON stands for"JavaScript Object Notation").τJOWL allows(1)to automatically build a temporal OWL 2 ontology of data,following the Closed World Assumption(CWA),from temporal JSON-based big data,and(2)to manage its incremental maintenance accommodating their evolution,in a temporal and multi-schema-version *** this paper,we propose a temporal ontology query language forτJOWL,namedτSQWRL(temporal SQWRL),designed as a temporal extension of the ontology query language—Semantic Query-enhanced Web Rule Language(SQWRL).The new language has been inspired by the features of the consensual temporal query language TSQL2(Temporal SQL2),well known in the temporal(relational)database *** aim of the proposal is to enable and simplify the task of retrieving any desired ontology version or of specifying any(complex)temporal query on time-varying ontologies generated from time-varying big *** examples,in the Internet of Healthcare Things(IoHT)domain,are provided to motivate and illustrate our proposal.
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing meth...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing methods only aim at learning network dynamic behaviors generated by a specific ordinary differential equation instance, resulting in ineffectiveness for new ones, and generally require dense *** observed data, especially from network emerging dynamics, are usually difficult to obtain, which brings trouble to model learning. Therefore, learning accurate network dynamics with sparse, irregularly-sampled,partial, and noisy observations remains a fundamental challenge. We introduce a new concept of the stochastic skeleton and its neural implementation, i.e., neural ODE processes for network dynamics(NDP4ND), a new class of stochastic processes governed by stochastic data-adaptive network dynamics, to overcome the challenge and learn continuous network dynamics from scarce observations. Intensive experiments conducted on various network dynamics in ecological population evolution, phototaxis movement, brain activity, epidemic spreading, and real-world empirical systems, demonstrate that the proposed method has excellent data adaptability and computational efficiency, and can adapt to unseen network emerging dynamics, producing accurate interpolation and extrapolation with reducing the ratio of required observation data to only about 6% and improving the learning speed for new dynamics by three orders of magnitude.
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have be...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have been developed to tackle these ***,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional *** fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within *** traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of *** selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)*** this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious *** classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable *** the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive *** experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different *** outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%*** results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
Decentralized Anonymous Payment Systems (DAP), often known as cryptocurrencies, stand out as some of the most innovative and successful applications on the blockchain. These systems have garnered significant attention...
详细信息
The increasing complexity of designing, deploying, and maintaining Cyber-Physical Systems (CPS), particularly those incorporating multiple interacting robots, presents significant challenges regarding programming and ...
详细信息
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcoming...
详细信息
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcomings in the MECPE task: 1) it ignores emotion utterances whose causes cannot be located in the conversation but require contextualized inference;2) it fails to locate the exact causes that occur in vision or audio modalities beyond text. To address these issues, in this paper, we introduce a new task named Multimodal Emotion-Cause Pair Generation in Conversations (MECPG), which aims to identify the emotion utterances with their emotion categories and generate their corresponding causes in a conversation. To tackle the MECPG task, we construct a dataset based on a benchmark corpus for MECPE. We further propose a generative framework named MONICA, which jointly performs emotion recognition and emotion cause generation with a sequence-to-sequence model. Experiments on our annotated dataset show the superiority of MONICA over several competitive systems. Our dataset and source codes will be publicly released. IEEE
Software-defined Networking (SDN) is an innovative network architecture tailored to address the modern demands of network virtualization and cloud computing, which require features such as programmability, flexibility...
详细信息
暂无评论