咨询与建议

限定检索结果

文献类型

  • 179 篇 会议
  • 141 篇 期刊文献

馆藏范围

  • 320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 112 篇 计算机科学与技术...
    • 103 篇 软件工程
    • 57 篇 控制科学与工程
    • 45 篇 光学工程
    • 37 篇 信息与通信工程
    • 34 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 电子科学与技术(可...
    • 16 篇 机械工程
    • 14 篇 电气工程
    • 12 篇 仪器科学与技术
    • 12 篇 交通运输工程
    • 10 篇 动力工程及工程热...
    • 8 篇 化学工程与技术
    • 7 篇 土木工程
    • 5 篇 建筑学
    • 5 篇 船舶与海洋工程
    • 5 篇 航空宇航科学与技...
  • 97 篇 理学
    • 35 篇 数学
    • 35 篇 物理学
    • 35 篇 生物学
    • 16 篇 统计学(可授理学、...
    • 8 篇 化学
  • 36 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 13 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 8 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 4 篇 农学
  • 3 篇 教育学
  • 1 篇 经济学

主题

  • 41 篇 robot vision sys...
  • 34 篇 computer vision
  • 27 篇 intelligent robo...
  • 26 篇 robot sensing sy...
  • 25 篇 laboratories
  • 20 篇 cameras
  • 19 篇 computer science
  • 17 篇 mobile robots
  • 17 篇 robustness
  • 15 篇 navigation
  • 15 篇 artificial intel...
  • 15 篇 robot kinematics
  • 15 篇 robotics and aut...
  • 12 篇 humans
  • 12 篇 shape
  • 12 篇 layout
  • 11 篇 robots
  • 10 篇 object detection
  • 9 篇 target tracking
  • 9 篇 manipulators

机构

  • 20 篇 shenzhen institu...
  • 20 篇 artificial intel...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 computer vision ...
  • 15 篇 embedded vision ...
  • 13 篇 guangdong key la...
  • 9 篇 department of el...
  • 9 篇 institutes for r...
  • 8 篇 university of ch...
  • 7 篇 embedded vision ...
  • 6 篇 computer vision ...
  • 6 篇 heidelberg
  • 5 篇 shenzhen key lab...
  • 5 篇 vision and robot...
  • 5 篇 department of qu...
  • 5 篇 ihu strasbourg s...
  • 5 篇 artificial intel...
  • 5 篇 guangdong provin...
  • 4 篇 key laboratory o...

作者

  • 30 篇 shen linlin
  • 25 篇 kryjak tomasz
  • 22 篇 n.p. papanikolop...
  • 15 篇 zhang hong
  • 11 篇 linlin shen
  • 11 篇 xie weicheng
  • 10 篇 c.e. smith
  • 10 篇 douglas g. macha...
  • 9 篇 hong zhang
  • 8 篇 song siyang
  • 8 篇 luo cheng
  • 8 篇 in so kweon
  • 7 篇 tang chao
  • 7 篇 szolc hubert
  • 7 篇 islam md jahidul
  • 6 篇 lyons damian m.
  • 6 篇 luiz chaimowicz
  • 6 篇 blachut krzyszto...
  • 6 篇 sattar junaed
  • 6 篇 huang dehao

语言

  • 311 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Science Robotics and Vision Laboratory"
320 条 记 录,以下是141-150 订阅
排序:
vision-Based Goal-Conditioned policies for underwater navigation in the presence of obstacles
arXiv
收藏 引用
arXiv 2020年
作者: Manderson, Travis Gamboa, Juan Camilo Wapnick, Stefan Tremblay, Jean-François Shkurti, Florian Meger, Dave Dudek, Gregory Mobile Robotics Laboratory School of Computer Science McGill University Montreal Canada Robot Vision & Learning Lab Department of Computer Science University of Toronto Canada
We present Nav2Goal, a data-efficient and end-to-end learning method for goal-conditioned visual navigation. Our technique is used to train a navigation policy that enables a robot to navigate close to sparse geograph... 详细信息
来源: 评论
Open-set face recognition for small galleries using siamese networks
arXiv
收藏 引用
arXiv 2021年
作者: Salomon, Gabriel Britto, Alceu Vareto, Rafael H. Schwartz, William R. Menotti, David Vision Robotics and Imaging Laboratory Universidade Federal Do Paraná 82590300 Brazil Ppgia Pontifícia Universidade Católica Do Paraná 80215901 Brazil Smart Sense Laboratory Department of Computer Science Universidade Federal de Minas Gerais 31270901 Brazil
Face recognition has been one of the most relevant and explored fields of Biometrics. In real-world applications, face recognition methods usually must deal with scenarios where not all probe individuals were seen dur... 详细信息
来源: 评论
SABER: Data-driven motion planner for autonomously navigating heterogeneous robots
arXiv
收藏 引用
arXiv 2021年
作者: Schperberg, Alexander Tsuei, Stephanie Soatto, Stefano Hong, Dennis The Robotics and Mechanisms Laboratory Department of Mechanical and Aerospace Engineering University of California Los AngelesCA90095 United States The UCLA Vision Lab Department of Computer Science University of California Los AngelesCA90095 United States
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal while avoiding obstacles in uncertain environments. First, we use... 详细信息
来源: 评论
CertainOdom: Uncertainty Weighted Multi-task Learning Model for LiDAR Odometry Estimation
CertainOdom: Uncertainty Weighted Multi-task Learning Model ...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Leyuan Sun Guanqun Ding Yusuke Yoshiyasu Fumio Kanehiro Department of Intelligent and Mechanical Interaction Systems Graduate School of Science and Technology University of Tsukuba Tsukuba Ibaraki Japan CNRS-AIST Joint Robotics Laboratory (JRL) IRL National Institute of Advanced Industrial Science and Technology (AIST). Digital Architecture Research Center (DARC) National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Japan Computer Vision Research Team Artificial Intelligence Research Center (AIRC) National Institute of Advanced Industrial Science and Technology (AIST) Japan
As a basic and indispensable module, LiDAR odom-etry estimation is widely used in robotics. In recent years, learning-based modeling approaches for odometry estimation have been validated to be feasible. However, it i... 详细信息
来源: 评论
Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Schmidt, Kendall Bearce, Benjamin Chang, Ken Coombs, Laura Farahani, Keyvan Elbatel, Marawan Mouheb, Kaouther Marti, Robert Zhang, Ruipeng Zhang, Yao Wang, Yanfeng Hu, Yaojun Ying, Haochao Xu, Yuyang Testagrose, Conrad Demirer, Mutlu Gupta, Vikash Akünal, Ünal Bujotzek, Markus Maier-Hein, Klaus H. Qin, Yi Li, Xiaomeng Kalpathy-Cramer, Jayashree Roth, Holger R. American College of Radiology United States The Massachusetts General Hospital United States University of Colorado United States National Institutes of Health National Cancer Institute United States Computer Vision and Robotics Institute University of Girona Spain Cooperative Medianet Innovation Center Shanghai Jiao Tong University China Shanghai AI Laboratory China Real Doctor AI Research Centre Zhejiang University China School of Public Health Zhejiang University China College of Computer Science and Technology Zhejiang University China University of North Florida College of Computing Jacksonville United States Mayo Clinic Florida Radiology United States Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Electronic and Computer Engineering Hong Kong University of Science and Technology China NVIDIA United States
The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characte... 详细信息
来源: 评论
Shape-Aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains  23rd
Shape-Aware Meta-learning for Generalizing Prostate MRI Segm...
收藏 引用
23rd International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2020
作者: Liu, Quande Dou, Qi Heng, Pheng-Ann Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin Hong Kong T Stone Robotics Institute The Chinese University of Hong Kong Shatin Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Model generalization capacity at domain shift (e.g., various imaging protocols and scanners) is crucial for deep learning methods in real-world clinical deployment. This paper tackles the challenging problem of domain... 详细信息
来源: 评论
Group-wise inhibition based feature regularization for robust classification
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Haozhe Wu, Haoqian Xie, Weicheng Liu, Feng Shen, Linlin 1Computer Vision Institute College of Computer Science and Software Engineering 2SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society 3National Engineering Laboratory for Big Data System Computing Technology 4Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most... 详细信息
来源: 评论
Understanding Adversarial Examples From the Mutual Influence of Images and Perturbations
Understanding Adversarial Examples From the Mutual Influence...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Chaoning Zhang Philipp Benz Tooba Imtiaz In So Kweon Robotics and Computer Vision (RCV) Laboratory Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea Korea Advanced Institute of Science and Technology Daejeon South Korea
A wide variety of works have explored the reason for the existence of adversarial examples, but there is no consensus on the explanation. We propose to treat the DNN logits as a vector for feature representation, and ... 详细信息
来源: 评论
WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Guo, Sheng Lai, Zhihui Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China MyBank Ant Group Hangzhou310012 China
Though widely used in image classification, convolutional neural networks (CNNs) are prone to noise interruptions, i.e. the CNN output can be drastically changed by small image noise. To improve the noise robustness, ... 详细信息
来源: 评论
Motion planner augmented reinforcement learning for robot manipulation in obstructed environments
arXiv
收藏 引用
arXiv 2020年
作者: Yamada, Jun Lee, Youngwoon Salhotra, Gautam Pertsch, Karl Pflueger, Max Sukhatme, Gaurav S. Lim, Joseph J. Englert, Peter Cognitive Learning for Vision and Robotics Lab United States Robotic Embedded Systems Laboratory Department of Computer Science University of Southern California United States
Deep reinforcement learning (RL) agents are able to learn contact-rich manipulation tasks by maximizing a reward signal, but require large amounts of experience, especially in environments with many obstacles that com... 详细信息
来源: 评论