With the rapid development of intelligent systems, Multi-Agent Systems (MAS) have shown unique advantages in solving complex decision-making problems. Particularly in the field of Multi-Agent Reinforcement Learning (M...
详细信息
Hyperspectral images (HSIs) provide rich spectral information, but acquiring high-resolution data is costly and challenging, making spectral super-resolution essential. Inspired by the near-linear efficiency of state ...
详细信息
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series *** to the challenges associated with annotating anomaly events,time series reconstructi...
详细信息
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series *** to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly ***,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time *** this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as ***,a series and feature mixing block is introduced to learn representations in 1D ***,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature ***,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly *** results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.
Transformer-based methods have improved the quality of hyperspectral images (HSIs) reconstructed from RGB by effectively capturing their remote relationships. The self-attention mechanisms in existing Transformer mode...
详细信息
Graph Convolutional Networks (GCNs) have attracted considerable attention in the realm of human action recognition. However, conventional GCNs-based methods typically struggle to construct adjacency matrices that capt...
详细信息
In recent years, how to achieve stable localization and construct high-quality dense maps in large-scale scenes has become a research highlight. In large-scale scenes, for the consideration of the mapping accuracy and...
详细信息
In recent years, how to achieve stable localization and construct high-quality dense maps in large-scale scenes has become a research highlight. In large-scale scenes, for the consideration of the mapping accuracy and efficiency, multi-agent systems rather than single-agent ones are usually employed. Currently, as far as we know, collaborative VI-SLAM (Visual Inertial Simultaneous Localization And Mapping) systems applicable to multi-agent systems are still sporadic, and systems those can achieve a good balance among the localization accuracy, the mapping density, and the transmission efficiency are temporarily lacking. In this paper, we propose a novel centralized collaborative VI-SLAM framework, namely TES-CVIDS (Transmission Efficient Sub-map based Collaborative Visual-Inertial Dense SLAM). In TES-CVIDS, instead of the original RGBD images, the compact sub-maps are transmitted, effectively reducing the transmission data redundancy. After that, the server completes key-frame processing, hierarchical pose-graph optimization, and global dense map construction in three separate threads. Besides, thanks to our depth search mechanism, the geometry information of all key-frames can be recovered on the server-end. Thus, sub-maps can be regenerated after the global pose-graph optimization to maintain the consistency between the localization and the mapping. Both the qualitative and the quantitative experimental results corroborate the superior performance of our TES-CVIDS. To make our results reproducible, the source code has been released at https://***/TES-CVIDS-MainPage/. IEEE
Due to the limitations of current spectral imaging equipment in acquiring high-resolution hyperspectral images (HR-HSIs), a common approach is to fuse low-resolution hyperspectral images (LR-HSIs) with high-resolution...
详细信息
Composed image retrieval seeks to retrieve a target image that fulfills both modalities based on the user's query, which comprises a modified text and a reference image. Although existing studies introduce novel m...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
Melanoma is of the lethal and rare types of skin *** is curable at an initial stage and the patient can survive *** is very difficult to screen all skin lesion patients due to costly *** are requiring a correct method ...
详细信息
Melanoma is of the lethal and rare types of skin *** is curable at an initial stage and the patient can survive *** is very difficult to screen all skin lesion patients due to costly *** are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders,pigment networks,and the color of *** challenges are required an automated system to classify the clinical features of melanoma and non-melanoma *** trained clinicians can overcome the issues such as low contrast,lesions varying in size,color,and the existence of several objects like hair,reflections,air bubbles,and oils on almost all *** contour is one of the suitable methods with some drawbacks for the segmentation of irre-gular *** entropy and morphology-based automated mask selection is pro-posed for the active contour *** proposed method can improve the overall segmentation along with the boundary of melanoma *** this study,features have been extracted to perform the classification on different texture scales like Gray level co-occurrence matrix(GLCM)and Local binary pattern(LBP).When four different moments pull out in six different color spaces like HSV,Lin RGB,YIQ,YCbCr,XYZ,and CIE L*a*b then global information from different colors channels have been ***,hybrid fused texture features;such as local,color feature as global,shape features,and Artificial neural network(ANN)as classifiers have been proposed for the categorization of the malignant and *** had been carried out on datasets Dermis,DermQuest,and *** results of our advanced method showed super-iority and contrast with the existing state-of-the-art techniques.
暂无评论