Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)*** networks give a safe and more effective driving experie...
详细信息
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)*** networks give a safe and more effective driving experience by presenting time-sensitive and location-aware *** communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with ***,the scheme of an effectual routing protocol for reliable and stable communications is *** research demonstrates that clustering is an intelligent method for effectual routing in a mobile ***,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in *** FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the *** accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust *** the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR *** experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
Machine learning has become important for anomaly detection in water quality prediction. Data anomalies are often caused by the difficulties of analysing large amounts of data, both technical and human, but approaches...
详细信息
In an era characterized by an increasing reliance on mobile applications, this research paper presents the design and implementation of a user-friendly mobile application aimed at assisting individuals in completing t...
详细信息
The recognition of pathological voice is considered a difficult task for speech ***,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are ...
详细信息
The recognition of pathological voice is considered a difficult task for speech ***,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are caused by voice alteration of vocal folds and their accuracy is between 60%–70%.To enhance detection accuracy and reduce processing speed of dysphonia detection,a novel approach is proposed in this *** have leveraged Linear Discriminant Analysis(LDA)to train multiple Machine Learning(ML)models for dysphonia *** ML models are utilized like Support Vector Machine(SVM),Logistic Regression,and K-nearest neighbor(K-NN)to predict the voice pathologies based on features like Mel-Frequency Cepstral Coefficients(MFCC),Fundamental Frequency(F0),Shimmer(%),Jitter(%),and Harmonic to Noise Ratio(HNR).The experiments were performed using Saarbrucken Voice Data-base(SVD)and a privately collected *** K-fold cross-validation approach was incorporated to increase the robustness and stability of the ML *** to the experimental results,our proposed approach has a 70%increase in processing speed over Principal Component Analysis(PCA)and performs remarkably well with a recognition accuracy of 95.24%on the SVD dataset surpassing the previous best accuracy of 82.37%.In the case of the private dataset,our proposed method achieved an accuracy rate of 93.37%.It can be an effective non-invasive method to detect dysphonia.
Cloud computing involves accessing and using computing resources, such as servers, storage, and software applications, over the Internet, enabling scalable access on demand. Cloud computing systems are becoming an ess...
详细信息
“Flying Ad Hoc Networks(FANETs)”,which use“Unmanned Aerial Vehicles(UAVs)”,are developing as a critical mechanism for numerous applications,such as military operations and civilian *** dynamic nature of FANETs,wit...
详细信息
“Flying Ad Hoc Networks(FANETs)”,which use“Unmanned Aerial Vehicles(UAVs)”,are developing as a critical mechanism for numerous applications,such as military operations and civilian *** dynamic nature of FANETs,with high mobility,quick node migration,and frequent topology changes,presents substantial hurdles for routing protocol *** the preceding few years,researchers have found that machine learning gives productive solutions in routing while preserving the nature of FANET,which is topology change and high *** paper reviews current research on routing protocols and Machine Learning(ML)approaches applied to FANETs,emphasizing developments between 2021 and *** research uses the PRISMA approach to sift through the literature,filtering results from the SCOPUS database to find 82 relevant *** research study uses machine learning-based routing algorithms to beat the issues of high mobility,dynamic topologies,and intermittent connection in *** compared with conventional routing,it gives an energy-efficient and fast decision-making solution in a real-time environment,with greater fault tolerance *** protocols aim to increase routing efficiency,flexibility,and network stability using ML’s predictive and adaptive *** comprehensive review seeks to integrate existing information,offer novel integration approaches,and recommend future research topics for improving routing efficiency and flexibility in ***,the study highlights emerging trends in ML integration,discusses challenges faced during the review,and discusses overcoming these hurdles in future research.
This research paper has focused on the integration of promising stock market indicators such as the relative strength index (RSI) and different versions of the exponential moving average (EMA) (i.e., 50-day, 100-day, ...
详细信息
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(E...
详细信息
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal *** EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was *** train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was *** on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive *** consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)*** outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.
The article focuses on the Bobcat-1 CubeSat mission, particularly its role in evaluating the feasibility of monitoring GNSS-to-GNSS time offsets from low-Earth orbit (LEO). It discusses the mission objectives, accompl...
The article focuses on the Bobcat-1 CubeSat mission, particularly its role in evaluating the feasibility of monitoring GNSS-to-GNSS time offsets from low-Earth orbit (LEO). It discusses the mission objectives, accomplishments, and challenges faced in estimating these parameters, highlighting the significance of XYTO monitoring for full GNSS interoperability. It presents results from data collections conducted by Bobcat-1.
A test known as an MRI creates precise images of the inside of the body using strong magnets, radio waves, and a computer. One of the most dynamic and secure imaging methods now used in clinics is MRI. However, MRI ac...
详细信息
暂无评论