The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is...
详细信息
The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is *** convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification ***,it requires large training datasets and several parameters that need careful *** proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango *** model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning *** data loader also builds mini-batches for training the models to reduce training ***,optimization approaches help increase the overall model’s efficiency and lower computing *** employed on the MangoLeafBD Dataset consists of a total of 4,000 *** the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.
Log parsing, the process of transforming raw logs into structured data, is a key step in the complex computer system's intelligent operation and maintenance and therefore has received extensive attention. Among al...
详细信息
Existing deep clustering approaches often struggle with redundant feature learning, which limits their effectiveness. The primary goal of this study is to address these issues by developing a more robust deep clusteri...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;theref...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a *** this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the *** the other hand,a decoder was used to reproduce the original image back after the vector was received and *** convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and *** hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding *** this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in *** first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification *** second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 *** third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow...
详细信息
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow uncontrollably, forming a tumor on the skin. To prevent skin cancer from spreading and potentially leading to serious complications, it's critical to identify and treat it as early as possible. An innovative two-fold deep learning based skin cancer detection model is presented in this research work. Five main stages make up the proposed model: Preprocessing, segmentation, feature extraction, feature selection, and skin cancer detection. Initially, the Min–max contrast stretching and median filtering used to pre-process the collected raw image. From the pre-processed image, the Region of Intertest (ROI) is identified via optimized mask Region-based Convolutional Neural Network (R-CNN). Then, from the identified ROI areas, the texture features like Illumination-invariant Binary Gabor Pattern (II-BGP), Local Binary Pattern (LBP), Gray-Level Co-occurrence Matrix (GLCM), Color feature such as Color Correlogram and Histogram Intersection, and Shape feature including Moments, Area, Perimeter, Eccentricity, Average bending energy are extracted. To choose the optimal features from the extracted ones, the Golden Eagle Mutated Leader Optimization (GEMLO) is used. The proposed Golden Eagle Mutated Leader Optimization (GEMLO) is the conceptual amalgamation of the standard Mutated Leader Algorithm (MLA) and Golden Eagle Optimizer are used to select best features (GEO). The skin cancer detection is accomplished via two-fold-deep-learning-classifiers, that includes the Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The final outcome is the combination of the outcomes acquired from Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The PYTHON platform is being used to implement the suggested model. Using the curre
With recent advancements made in wireless communication techniques,wireless sensors have become an essential component in both data collection as well as tracking *** Sensor Network(WSN)is an integral part of Internet...
详细信息
With recent advancements made in wireless communication techniques,wireless sensors have become an essential component in both data collection as well as tracking *** Sensor Network(WSN)is an integral part of Internet of Things(IoT)and it encounters different kinds of security *** is designed as a game changer for highly secure and effective digital ***,the current research paper focuses on the design of Metaheuristic-based Clustering with Routing Protocol for Blockchain-enabled WSN abbreviated as *** proposed MCRP-BWSN technique aims at deriving a shared memory scheme using blockchain technology and determine the optimal paths to reach the destination in clustered *** MCRP-BWSN technique,Chimp Optimization Algorithm(COA)-based clustering technique is designed to elect a proper set of Cluster Heads(CHs)and organize the selected *** addition,Horse Optimization Algorithm(HOA)-based routing technique is also presented to optimally select the routes based onfitness ***,HOA-based routing technique utilizes blockchain technology to avail the shared mem-ory among nodes in the *** nodes are treated as coins whereas the ownership handles the sensor nodes and Base Station(BS).In order to validate the enhanced performance of the proposed MCRP-BWSN technique,a wide range of simulations was conducted and the results were examined under different *** on the performance exhibited in simulation outcomes,the pro-posed MCRP-BWSN technique has been established as a promising candidate over other existing techniques.
This paper presents a novel approach for generating intricate Batik motifs using a modified Diffusion-Generative Adversarial Network (Diffusion-GAN) augmented with StyleGAN2-Ada. Motivated by the rich cultural heritag...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in convention...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)*** Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent *** this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN *** model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant *** adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack *** proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble *** proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in *** provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving *** comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing *** results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost.
Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation ***,existing knowledge-aware recommendation methods face challenges such as weak user-it...
详细信息
Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation ***,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge *** tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge ***,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and ***,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view *** paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge ***,this paper introduces multi-task learning to mitigate the problem of weak supervisory *** validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM *** results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.
1 Introduction In recent years,foundation Vision-Language Models(VLMs),such as CLIP[1],which empower zero-shot transfer to a wide variety of domains without fine-tuning,have led to a significant shift in machine learn...
详细信息
1 Introduction In recent years,foundation Vision-Language Models(VLMs),such as CLIP[1],which empower zero-shot transfer to a wide variety of domains without fine-tuning,have led to a significant shift in machine learning *** the impressive capabilities,it is concerning that the VLMs are prone to inheriting biases from the uncurated datasets scraped from the Internet[2–5].We examine these biases from three perspectives.(1)Label bias,certain classes(words)appear more frequently in the pre-training data.(2)Spurious correlation,non-target features,e.g.,image background,that are correlated with labels,resulting in poor group robustness.(3)Social bias,which is a special form of spurious correlation,focuses on societal *** image-text pairs might contain human prejudice,e.g.,gender,ethnicity,and age,that are correlated with *** biases are subsequently propagated to downstream tasks,leading to biased predictions.
暂无评论