Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data ar...
详细信息
Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process;this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, preci
In the current era of smart technology, integrating the Internet of Things (IoT) with Artificial Intelligence has revolutionized several fields, including public health and sanitation. The smart lavatory solution prop...
详细信息
Vehicular Named Data Networks (VNDN) is a content centric approach for vehicle networks. The fundamental principle of addressing the content rather than the host, suits vehicular environment. There are numerous challe...
详细信息
This study presents a sustainable and effective approach for obtaining land uses and land covers (LULC) details utilizing remote sensing images. The modified Convolutional Neural Network (CNN), Inception-Resnet V2, is...
详细信息
Software defect prediction (SDP) is considered a dynamic research problem and is beneficial during the testing stage of the software development life cycle. Several artificial intelligence-based methods were avai...
详细信息
Software defect prediction (SDP) is considered a dynamic research problem and is beneficial during the testing stage of the software development life cycle. Several artificial intelligence-based methods were available to predict these software defects. However, the detection accuracy is still low due to imbalanced datasets, poor feature learning, and tuning of the model's parameters. This paper proposes a novel attention-included Deep Learning (DL) model for SDP with effective feature learning and dimensionality reduction mechanisms. The system mainly comprises ‘6’ phases: dataset balancing, source code parsing, word embedding, feature extraction, dimensionality reduction, and classification. First, dataset balancing was performed using the density peak based k-means clustering (DPKMC) algorithm, which prevents the model from having biased outcomes. Then, the system parses the source code into abstract syntax trees (ASTs) that capture the structure and relationship between different elements of the code to enable type checking and the representative nodes on ASTs are selected to form token vectors. Then, we use bidirectional encoder representations from transformers (BERT), which converts the token vectors into numerical vectors and extracts semantic features from the data. We then input the embedded vectors to multi-head attention incorporated bidirectional gated recurrent unit (MHBGRU) for contextual feature learning. After that, the dimensionality reduction is performed using kernel principal component analysis (KPCA), which transforms the higher dimensional data into lower dimensions and removes irrelevant features. Finally, the system used a deep, fully connected network-based SoftMax layer for defect prediction, in which the cross-entropy loss is utilized to minimize the prediction loss. The experiments on the National Aeronautics and Space Administration (NASA) and AEEEM show that the system achieves better outcomes than the existing state-of-the-art models f
1 Introduction In Natural Language Processing(NLP),topic modeling is a class of methods used to analyze and explore textual corpora,i.e.,to discover the underlying topic structures from text and assign text pieces to ...
详细信息
1 Introduction In Natural Language Processing(NLP),topic modeling is a class of methods used to analyze and explore textual corpora,i.e.,to discover the underlying topic structures from text and assign text pieces to different *** NLP,a topic means a set of relevant words appearing together in a particular pattern,representing some specific *** is beneficial for tracking social media trends,constructing knowledge graphs,and analyzing writing *** modeling has always been an area of extensive research in *** methods like Latent Semantic Analysis(LSA)and Latent Dirichlet Allocation(LDA),based on the“bag of words”(BoW)model,often fail to grasp the semantic nuances of the text,making them less effective in contexts involving polysemy or data noise,especially when the amount of data is small.
Early detection at the premalignant stage is desirable to prevent Squamous cell carcinoma (SCC) tongue morbidity and death. An automated method for oral cancer identification was developed because conventional early d...
详细信息
In the field of object detection for remote sensing images, especially in applications such as environmental monitoring and urban planning, significant progress has been made. This paper addresses the common challenge...
详细信息
Gender identification from videos is a challenging task with significant real-world applications, such as video content analysis and social behavior research. In this study, we propose a novel approach, the White Shar...
详细信息
State-space graphs and automata serve as fundamental tools for modeling and analyzing the behavior of computational systems. Recurrent neural networks (RNNs) and language models are deeply intertwined, as RNNS provide...
详细信息
暂无评论