To solve the problem that the massive amount of information and real-time processing in the IoT system puts pressure on the computing resources of the whole system, the industry often adopts the computation offloading...
详细信息
Anaemia, a condition characterised by reduced haemoglobin levels, exerts a significant global impact, affecting billions of individuals worldwide. According to data from the World Health Organisation (WHO), India exhi...
详细信息
Neural machine translation (NMT) has become an essential tool for breaking down language barriers and facilitating communication between different cultures and communities. However, NMT’s potential impact is limited ...
详细信息
A deep fusion model is proposed for facial expression-based human-computer Interaction ***,image preprocessing,i.e.,the extraction of the facial region from the input image is ***,the extraction of more discriminative...
详细信息
A deep fusion model is proposed for facial expression-based human-computer Interaction ***,image preprocessing,i.e.,the extraction of the facial region from the input image is ***,the extraction of more discriminative and distinctive deep learning features is achieved using extracted facial *** prevent overfitting,in-depth features of facial images are extracted and assigned to the proposed convolutional neural network(CNN)*** CNN models are then ***,the performance of each CNN model is fused to obtain the final decision for the seven basic classes of facial expressions,i.e.,fear,disgust,anger,surprise,sadness,happiness,*** experimental purposes,three benchmark datasets,i.e.,SFEW,CK+,and KDEF are *** performance of the proposed systemis compared with some state-of-the-artmethods concerning each *** performance analysis reveals that the proposed system outperforms the competitive methods in terms of various performance ***,the proposed deep fusion model is being utilized to control a music player using the recognized emotions of the users.
Csinstructors realize education may be impacted by generative AI (artificial intelligence). This article describes (1) opportunities, like 24/7 help or auto-grading, (2) challenges, like increased cheating or student ...
详细信息
In Taiwan, the current electricity prices for residential users remain relatively low. This results in a diminished incentive for these users to invest in energy-saving improvements. Consequently, devising strategies ...
详细信息
Brief Biography: Vishrant Tripathi obtained his PhD from the EECS department at MIT, working with Prof. Modiano at the Lab for Information and Decision Systems (LIDS). He is currently working on building efficient dat...
详细信息
Brief Biography: Vishrant Tripathi obtained his PhD from the EECS department at MIT, working with Prof. Modiano at the Lab for Information and Decision Systems (LIDS). He is currently working on building efficient data center networks at Google. His research interests primarily lie in the optimization of resources in resource constrained networked systems. The main applications of his work are in multi-agent robotics, federated learning, edge computing, cloud infrastructure, and monitoring for IoT. More recently, he has also been working on software defined networking and next-generation wireless networks. In 2022, he won the Best Paper Runner Up Award at ACM MobiHoc. Copyright is held by author/owner(s).
作者:
Manjunatha, A.S.Venkatramana Bhat, P.
Department of Computer and Communication Engineering India
Department of Computer Science and Engineering India
Data is collected and forwarded to the cluster head by sensor nodes in the Wireless Sensor Network (WSN). Ensuring the confidentiality and integrity of the data that must be provided to the base station is tough. We r...
详细信息
Risk prediction is an important task to ensuring the driving safety of railway trams. Although data-driven intelligent methods are proved to be effective for driving risk prediction, accuracy is still a top concern fo...
详细信息
Risk prediction is an important task to ensuring the driving safety of railway trams. Although data-driven intelligent methods are proved to be effective for driving risk prediction, accuracy is still a top concern for the challenges of data quality which mainly represent as the unbalanced datasets. This study focuses on applying feature extraction and data augmentation methods to achieve effective risk prediction for railway trams, and proposes an approach based on a self-adaptive K-means clustering algorithm and the least squares deep convolution generative adversarial network(LS-DCGAN). The data preprocessing methods are proposed, which include the K-means algorithm to cluster the locations of trams and the extreme gradient boosting recursive feature elimination based feature selection algorithm to retain the key features. The LS-DCGAN model is designed for sparse sample expansion, aiming to address the sample category distribution imbalance problem. The experiments implemented with the public and real datasets show that the proposed approach can reach a high accuracy of 90.69%,which can greatly enhances the tram driving safety.
作者:
Baba, AbdullatifAlothman, Basil
Computer Science and Engineering Department Kuwait
Computer Engineering Department Ankara Turkey
This paper explores essential aspects of autonomous underwater vehicle (AUV) design, focusing on hull structure, hydrodynamics, propulsion systems, and sensor integration. It also examines the role of underwater Simul...
详细信息
暂无评论