As the Internet of Things (IoT) grows, ensuring robust security is crucial. Intrusion Detection Systems (IDS) protect IoT networks from various cyber threats. This systematic literature review (SLR) explores the advan...
详细信息
Cloud Computing (CC) is widely adopted in sectors like education, healthcare, and banking due to its scalability and cost-effectiveness. However, its internet-based nature exposes it to cyber threats, necessitating ad...
详细信息
Advancements in smart applications highlight the need for increased processing and storage capacity at Smart Devices (SDs). To tackle this, Edge computing (EC) is enabled to offload SD workloads to distant edge server...
详细信息
Fish classification and object detection are crucial tasks in the fishery industry. The use of computer vision and deep learning techniques can help automate these tasks and improve the efficiency of the fishery indus...
详细信息
Weather variability significantly impacts crop yield, posing challenges for large-scale agricultural operations. This study introduces a deep learning-based approach to enhance crop yield prediction accuracy. A Multi-...
详细信息
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movemen...
详细信息
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling. Then, a Bi-LSTM-based model is proposed to predict the trajectories of vehicles. The service area is divided into several equal-sized grids. If the actual position of the vehicle and the predicted position by the model belong to the same grid, the prediction is considered correct, thereby reducing the difficulty of vehicle trajectory prediction. Moreover, we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction. Considering the inevitable prediction error, we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers, thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading. Simulation results show that, compared with other classical schemes, the proposed strategy has lower average task offloading delays.
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing...
详细信息
Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing *** manual forgery localization is often reliant on forensic *** recent times,machine learning(ML)and deep learning(DL)have shown promising results in automating image forgery ***,the ML-based method relies on hand-crafted ***,the DL method automatically extracts shallow spatial features to enhance the ***,DL-based methods lack the global co-relation of the features due to this performance degradation noticed in several *** the proposed study,we designed FLTNet(forgery localization transformer network)with a CNN(convolution neural network)encoder and transformer-based *** encoder extracts local high-dimensional features,and the transformer provides the global co-relation of the *** the decoder,we have exclusively utilized a CNN to upsample the features that generate tampered mask ***,we evaluated visual and quantitative performance on three standard datasets and comparison with six state-of-the-art *** IoU values of the proposed method on CASIA V1,CASIA V2,and CoMoFoD datasets are 0.77,0.82,and 0.84,*** addition,the F1-scores of these three datasets are 0.80,0.84,and 0.86,***,the visual results of the proposed method are clean and contain rich information,which can be used for real-time forgery *** code used in the study can be accessed through URL:https://***/ajit2k5/Forgery-Localization(accessed on 21 January 2025).
Cloud computing technology provides various computing resources on demand to users on pay per use basis. The technology fails in terms of its usage due to confidentiality and privacy issues. Access control mechanisms ...
详细信息
This paper proposes a Poor and Rich Squirrel Algorithm (PRSA)-based Deep Maxout network to find fraud data transactions in the credit card system. Initially, input transaction data is passed to the data transformation...
详细信息
暂无评论