The challenge of bankruptcy prediction, critical for averting financial sector losses, is amplified by the prevalence of imbalanced datasets, which often skew prediction models. Addressing this, our study introduces t...
详细信息
Chronic liver damage is believed to be mostly caused by the Hepatitis C virus (HCV). About 90% of hepatitis C infections progress to chronic hepatitis. Acute HCV infection is a condition that frequently progresses to ...
详细信息
Chronic renal disease is the term used to describe kidney function that gradually declines. The kidneys’ final byproduct of eliminating waste and surplus fluid from the bloodstream is urine. Abnormal accumulations of...
详细信息
Gradient compression is a promising approach to alleviating the communication bottleneck in data parallel deep neural network (DNN) training by significantly reducing the data volume of gradients for synchronization. ...
详细信息
Gradient compression is a promising approach to alleviating the communication bottleneck in data parallel deep neural network (DNN) training by significantly reducing the data volume of gradients for synchronization. While gradient compression is being actively adopted by the industry (e.g., Facebook and AWS), our study reveals that there are two critical but often overlooked challenges: 1) inefficient coordination between compression and communication during gradient synchronization incurs substantial overheads, and 2) developing, optimizing, and integrating gradient compression algorithms into DNN systems imposes heavy burdens on DNN practitioners, and ad-hoc compression implementations often yield surprisingly poor system performance. In this paper, we propose a compression-aware gradient synchronization architecture, CaSync, which relies on flexible composition of basic computing and communication primitives. It is general and compatible with any gradient compression algorithms and gradient synchronization strategies and enables high-performance computation-communication pipelining. We further introduce a gradient compression toolkit, CompLL, to enable efficient development and automated integration of on-GPU compression algorithms into DNN systems with little programming burden. Lastly, we build a compression-aware DNN training framework HiPress with CaSync and CompLL. HiPress is open-sourced and runs on mainstream DNN systems such as MXNet, TensorFlow, and PyTorch. Evaluation via a 16-node cluster with 128 NVIDIA V100 GPUs and a 100 Gbps network shows that HiPress improves the training speed over current compression-enabled systems (e.g., BytePS-onebit, Ring-DGC and PyTorch-PowerSGD) by 9.8%-69.5% across six popular DNN models. IEEE
Tumors are a pervasive concern in modern life, driven by cellular irregularities that disrupt the orderly division necessary for healthy cell growth. However, brain tumors present unique challenges compared to tumors ...
详细信息
To analyse the student’s academic performance, a new prediction model is developed. This proposed model collects the student’s data from standard online sources. At first, these gathered data are pre-processed by ce...
详细信息
Process monitoring plays a pivotal role in elucidating the intricate interplay among process, structure, and property in additive manufacturing production. The control of powder spreading affects not only particle adh...
详细信息
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and *** people share their views and ideas around the world through social media like Facebook an...
详细信息
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and *** people share their views and ideas around the world through social media like Facebook and *** goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s *** on if they provide a positive or negative perspective on a given topic,text documents or sentences can be *** compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature *** firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of *** account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy).
Point clouds can capture the precise geometric information of objects and scenes, which are an important source of 3-D data and one of the most popular 3-D geometric data structures for cognitions in many real-world a...
详细信息
An enormous amount of applications that are available for download permits users to enhance the functionality of the devices with brand-new features, which is a significant factor in the growing popularity of smartpho...
详细信息
暂无评论