The novel SoftwareDefined Networking(SDN)architecture potentially resolves specific challenges arising from rapid internet growth of and the static nature of conventional networks to manage organizational business req...
详细信息
The novel SoftwareDefined Networking(SDN)architecture potentially resolves specific challenges arising from rapid internet growth of and the static nature of conventional networks to manage organizational business requirements with distinctive ***,such benefits lead to a more adverse environment entailing network breakdown,systems paralysis,and online banking fraudulence and *** one of the most common and dangerous threats in SDN,probe attack occurs when the attacker scans SDN devices to collect the necessary knowledge on system susceptibilities,which is thenmanipulated to undermine the entire ***,high performance,and real-time systems prove pivotal in successful goal attainment through feature selection to minimize computation time,optimize prediction performance,and provide a holistic understanding of machine learning *** the extension of astute machine learning algorithms into an Intrusion Detection System(IDS)through SDN has garnered much scholarly attention within the past decade,this study recommended an effective IDS under the Grey-wolf optimizer(GWO)and Light Gradient Boosting Machine(Light-GBM)classifier for probe attack *** InSDN dataset was employed to train and test the proposed IDS,which is deemed to be a novel benchmarking dataset in *** proposed IDS assessment demonstrated an optimized performance against that of peer IDSs in probe attack detection within *** results revealed that the proposed IDS outperforms the state-of-the-art IDSs,as it achieved 99.8%accuracy,99.7%recall,99.99%precision,and 99.8%F-measure.
Artificial intelligence (AI) has the potential to revolutionize the field of gastrointestinal disease diagnosis by enabling the development of accurate and efficient automated systems. This study comprehensively inves...
详细信息
Ransomware is one of the most advanced malware which uses high computer resources and services to encrypt system data once it infects a system and causes large financial data losses to the organization and individuals...
详细信息
This paper presents Secure Orchestration, a novel framework meticulously planned to uphold rigorous security measures over the profound security concerns that lie within the container orchestration platforms, especial...
详细信息
The Internet has been enhanced recently by blockchain and Internet of Things(IoT)*** Internet of Things is a network of various sensor-equipped *** gradually integrates the Internet,sensors,and cloud *** is based on e...
详细信息
The Internet has been enhanced recently by blockchain and Internet of Things(IoT)*** Internet of Things is a network of various sensor-equipped *** gradually integrates the Internet,sensors,and cloud *** is based on encryption algorithms,which are shared database technologies on the *** technology has grown significantly because of its features,such as flexibility,support for integration,anonymity,decentralization,and independent *** nodes in the blockchain network are used to verify online ***,this integration creates scalability,interoperability,and security *** the last decade,several advancements in blockchain technology have drawn attention fromresearch communities and *** technology helps IoT networks become more reliable and enhance security and *** also removes single points of failure and lowers the *** recent years,there has been an increasing amount of literature on IoT and blockchain technology *** paper extensively examines the current state of blockchain technologies,focusing specifically on their integration into the Internet of ***,it highlights the benefits,drawbacks,and opportunities of recent studies on security issues based on blockchain solutions into *** survey examined various research papers fromdifferent types of ***,a review of the other IoT applications has been included,focusing on the security requirements and challenges in IoT-based *** research directions are gathered for the effective integration of Blockchain and IoT.
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
Breast cancer poses a significant global threat, highlighting the urgent need for early detection to reduce mortality rates. Researchers are working to minimize the occurrence of false positives and false negatives, t...
详细信息
Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image ***,because their initial cluster centers are randomly determined,it is...
详细信息
Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image ***,because their initial cluster centers are randomly determined,it is often seen that certain clusters converge to local *** addition to that,pathology image segmentation is also problematic due to uneven lighting,stain,and camera settings during the microscopic image capturing ***,this study proposes an Improved Slime Mould Algorithm(ISMA)based on opposition based learning and differential evolution’s mutation strategy to perform illumination-free White Blood Cell(WBC)*** ISMA helps to overcome the local optima trapping problem of the partitional clustering techniques to some *** paper also performs a depth analysis by considering only color components of many well-known color spaces for clustering to find the effect of illumination over color pathology image *** and visual results encourage the utilization of illumination-free or color component-based clustering approaches for image ***-KM and“ab”color channels of CIELab color space provide best results with above-99%accuracy for only nucleus ***,for entire WBC segmentation,ISMA-KM and the“CbCr”color component of YCbCr color space provide the best results with an accuracy of above 99%.Furthermore,ISMA-KM and ISMA-RKM have the lowest and highest execution times,*** the other hand,ISMA provides competitive outcomes over CEC2019 benchmark test functions compared to recent well-established and efficient Nature-Inspired Optimization Algorithms(NIOAs).
Recognition of human activity is an active research area. It uses the Internet of Things, Sensory methods, Machine Learning, and Deep Learning techniques to assist various application fields like home monitoring, robo...
详细信息
In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent C...
详细信息
暂无评论