In recent years, face detection has emerged as a prominent research field within computer Vision (CV) and Deep Learning. Detecting faces in images and video sequences remains a challenging task due to various factors ...
详细信息
In recent years, face detection has emerged as a prominent research field within computer Vision (CV) and Deep Learning. Detecting faces in images and video sequences remains a challenging task due to various factors such as pose variation, varying illumination, occlusion, and scale differences. Despite the development of numerous face detection algorithms in deep learning, the Viola-Jones algorithm, with its simple yet effective approach, continues to be widely used in real-time camera applications. The conventional Viola-Jones algorithm employs AdaBoost for classifying faces in images and videos. The challenge lies in working with cluttered real-time facial images. AdaBoost needs to search through all possible thresholds for all samples to find the minimum training error when receiving features from Haar-like detectors. Therefore, this exhaustive search consumes significant time to discover the best threshold values and optimize feature selection to build an efficient classifier for face detection. In this paper, we propose enhancing the conventional Viola-Jones algorithm by incorporating Particle Swarm Optimization (PSO) to improve its predictive accuracy, particularly in complex face images. We leverage PSO in two key areas within the Viola-Jones framework. Firstly, PSO is employed to dynamically select optimal threshold values for feature selection, thereby improving computational efficiency. Secondly, we adapt the feature selection process using AdaBoost within the Viola-Jones algorithm, integrating PSO to identify the most discriminative features for constructing a robust classifier. Our approach significantly reduces the feature selection process time and search complexity compared to the traditional algorithm, particularly in challenging environments. We evaluated our proposed method on a comprehensive face detection benchmark dataset, achieving impressive results, including an average true positive rate of 98.73% and a 2.1% higher average prediction accura
With the rapid proliferation of the Internet of Things, network traffic prediction has become crucial for intelligent network management, enabling more reliable and flexible services for a vast array of IoT devices an...
详细信息
For differentiating and customizing different classes of traffic and virtualizing physical resources of networks and machines, B5G/5G specifies several novel mechanisms, including VNF, SDN, Service Function Chaining, ...
详细信息
Higher-order patterns reveal sequential multistep state transitions,which are usually superior to origin-destination analyses that depict only first-order geospatial movement *** methods for higher-order movement mode...
详细信息
Higher-order patterns reveal sequential multistep state transitions,which are usually superior to origin-destination analyses that depict only first-order geospatial movement *** methods for higher-order movement modeling first construct a directed acyclic graph(DAG)of movements and then extract higher-order patterns from the ***,DAG-based methods rely heavily on identifying movement keypoints,which are challenging for sparse movements and fail to consider the temporal variants critical for movements in urban *** overcome these limitations,we propose HoLens,a novel approach for modeling and visualizing higher-order movement patterns in the context of an urban *** mainly makes twofold contributions:First,we designed an auto-adaptive movement aggregation algorithm that self-organizes movements hierarchically by considering spatial proximity,contextual information,and tem-poral ***,we developed an interactive visual analytics interface comprising well-established visualization techniques,including the H-Flow for visualizing the higher-order patterns on the map and the higher-order state sequence chart for representing the higher-order state *** real-world case studies demonstrate that the method can adaptively aggregate data and exhibit the process of exploring higher-order patterns using *** also demonstrate the feasibility,usability,and effectiveness of our approach through expert interviews with three domain experts.
Image captioning has seen significant research efforts over the last *** goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically *** real-world appl...
详细信息
Image captioning has seen significant research efforts over the last *** goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically *** real-world applications rely on image captioning,such as helping people with visual impairments to see their *** formulate a coherent and relevant textual description,computer vision techniques are utilized to comprehend the visual content within an image,followed by natural language processing *** approaches and models have been developed to deal with this multifaceted *** models prove to be stateof-the-art solutions in this *** work offers an exclusive perspective emphasizing the most critical strategies and techniques for enhancing image caption *** than reviewing all previous image captioning work,we analyze various techniques that significantly improve image caption generation and achieve significant performance improvements,including encompassing image captioning with visual attention methods,exploring semantic information types in captions,and employing multi-caption generation ***,advancements such as neural architecture search,few-shot learning,multi-phase learning,and cross-modal embedding within image caption networks are examined for their transformative *** comprehensive quantitative analysis conducted in this study identifies cutting-edgemethodologies and sheds light on their profound impact,driving forward the forefront of image captioning technology.
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection m...
详细信息
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection model using a Deep Convolutional Neural Network(D-CNN).The proposed Faster R-CNN(Faster Region-Based CNN)models are trained with Morphological *** proposed Faster R-CNN model is trained using the augmented *** overcoming the Imbalanced Data problem,data augmentation techniques are *** Faster R-CNN performance was com-pared with existing transfer learning *** results show that the Faster R-CNN performance was significant than other *** number of images in each class is *** example,the Neutrophil(segmented)class consists of 8,486 images,and Lymphocyte(atypical)class consists of eleven *** dataset is used to train the CNN for single-cell morphology classifi*** proposed work implies the high-class performance server called Nvidia Tesla V100 GPU(Graphics processing unit).
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and ...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and acquire contextual information hinders their *** propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address *** proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human *** used text augmentation techniques to producemore training data,improving the proposed model’s *** encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual *** integration improves the accuracy and robustness of the proposed ***,we present a method for balancing the training dataset by creating enhanced samples from the original *** balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed *** results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ***-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based *** balanced dataset and the additional training samples also enhance its *** findings highlight the significance of transformer-based approaches for special emotion recognition in conversations.
AC optimal power flow (AC OPF) is a fundamental problem in power system operations. Accurately modeling the network physics via the AC power flow equations makes AC OPF a challenging nonconvex problem. To search for g...
详细信息
Tear film,the outermost layer of the eye,is a complex and dynamic structure responsible for tear *** tear film lipid layer is a vital component of the tear film that provides a smooth optical surface for the cornea an...
详细信息
Tear film,the outermost layer of the eye,is a complex and dynamic structure responsible for tear *** tear film lipid layer is a vital component of the tear film that provides a smooth optical surface for the cornea and wetting the ocular *** eye syndrome(DES)is a symptomatic disease caused by reduced tear production,poor tear quality,or excessive *** diagnosis is a difficult task due to its multifactorial *** of several clinical tests available,the evaluation of the interference patterns of the tear film lipid layer forms a potential tool for DES *** instrument known as Tearscope Plus allows the rapid assessment of the lipid layer.A grading scale composed of five categories is used to classify lipid layer *** reported work proposes the design of an automatic system employing light weight convolutional neural networks(CNN)and nature inspired optimization techniques to assess the tear film lipid layer patterns by interpreting the images acquired with the Tearscope *** designed framework achieves promising results compared with the existing state-of-the-art techniques.
In the contemporary era,driverless vehicles are a reality due to the proliferation of distributed technologies,sensing technologies,and Machine to Machine(M2M)***,the emergence of deep learning techniques provides mor...
详细信息
In the contemporary era,driverless vehicles are a reality due to the proliferation of distributed technologies,sensing technologies,and Machine to Machine(M2M)***,the emergence of deep learning techniques provides more scope in controlling and making such vehicles energy *** existing methods,it is understood that there have been many approaches found to automate safe driving in autonomous and electric vehicles and also their energy ***,the models focus on different aspects *** is need for a comprehensive framework that exploits multiple deep learning models in order to have better control using Artificial Intelligence(AI)on autonomous driving and energy *** this end,we propose an AI-based framework for autonomous electric vehicles with multi-model learning and decision *** focuses on both safe driving in highway scenarios and energy *** deep learning based framework is realized with many models used for localization,path planning at high level,path planning at low level,reinforcement learning,transfer learning,power control,and speed *** reinforcement learning,state-action-feedback play important role in decision *** simulation implementation reveals that the efficiency of the AI-based approach towards safe driving of autonomous electric vehicle gives better performance than that of the normal electric vehicles.
暂无评论