The demand for continual machine learning in the context of limited computational resources and data availability is critical in the evolving landscape of the connected digital world. Current network applications pred...
详细信息
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine...
详细信息
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine learning techniques have emerged as a promising avenue for augmenting the capabilities of medical professionals in disease diagnosis and classification. In this research, the EFS-XGBoost classifier model, a robust approach for the classification of patients afflicted with COVID-19 is proposed. The key innovation in the proposed model lies in the Ensemble-based Feature Selection (EFS) strategy, which enables the judicious selection of relevant features from the expansive COVID-19 dataset. Subsequently, the power of the eXtreme Gradient Boosting (XGBoost) classifier to make precise distinctions among COVID-19-infected patients is *** EFS methodology amalgamates five distinctive feature selection techniques, encompassing correlation-based, chi-squared, information gain, symmetric uncertainty-based, and gain ratio approaches. To evaluate the effectiveness of the model, comprehensive experiments were conducted using a COVID-19 dataset procured from Kaggle, and the implementation was executed using Python programming. The performance of the proposed EFS-XGBoost model was gauged by employing well-established metrics that measure classification accuracy, including accuracy, precision, recall, and the F1-Score. Furthermore, an in-depth comparative analysis was conducted by considering the performance of the XGBoost classifier under various scenarios: employing all features within the dataset without any feature selection technique, and utilizing each feature selection technique in isolation. The meticulous evaluation reveals that the proposed EFS-XGBoost model excels in performance, achieving an astounding accuracy rate of 99.8%, surpassing the efficacy of other prevailing feature selection techniques. This research not only advances the field of COVI
The retinal illness that causes vision loss frequently on the globe is glaucoma. Hence, the earlier detection of Glaucoma is important. In this article, modified AlexNet deep leaning model is proposed to category the ...
详细信息
The retinal illness that causes vision loss frequently on the globe is glaucoma. Hence, the earlier detection of Glaucoma is important. In this article, modified AlexNet deep leaning model is proposed to category the source retinal images into either healthy or Glaucoma through the detection and segmentations of optic disc (OD) and optic cup (OC) regions in retinal pictures. The retinal images are preprocessed and OD region is detected and segmented using circulatory filter. Further, OC regions are detected and segmented using K-means classification algorithm. Then, the segmented OD and OC region are classified and trained by the suggested AlexNet deep leaning model. This model classifies the source retinal image into either healthy or Glaucoma. Finally, performance measures have been estimated in relation to ground truth pictures in regards to accuracy, specificity and sensitivity. These performance measures are contrasted with the other previous Glaucoma detection techniques on publicly accessible retinal image datasets HRF and RIGA. The suggested technique as described in this work achieves 91.6% GDR for mild case and also achieves 100% GDR for severe case on HRF dataset. The suggested method as described in this work achieves 97.7% GDR for mild case and also achieves 100% GDR for severe case on RIGA dataset. AIM: Segmenting the OD and OC areas and classifying the source retinal picture as either healthy or glaucoma-affected. METHODS: The retinal images are preprocessed and OD region is detected and segmented using circulatory filter. Further, OC region is detected and segmented using K-means classification algorithm. Then, the segmented OD and OC region classified are and trained by the suggested AlexNet deep leaning model. RESULTS: The suggested method as described in this work achieves 91.6% GDR for mild case and also achieves 100% GDR for severe case on HRF dataset. The suggested method as described in this work achieves 97.7% GDR for mild case and also achie
Cancers have emerged as a significant concern due to their impact on public health and society. The examination and interpretation of tissue sections stained with Hematoxylin and Eosin (H&E) play a crucial role in...
详细信息
Cancers have emerged as a significant concern due to their impact on public health and society. The examination and interpretation of tissue sections stained with Hematoxylin and Eosin (H&E) play a crucial role in disease assessment, particularly in cases like gastric cancer. Microsatellite instability (MSI) is suggested to contribute to the carcinogenesis of specific gastrointestinal tumors. However, due to the nonspecific morphology observed in H&E-stained tissue sections, MSI determination often requires costly evaluations through various molecular studies and immunohistochemistry methods in specialized molecular pathology laboratories. Despite the high cost, international guidelines recommend MSI testing for gastrointestinal cancers. Thus, there is a pressing need for a new diagnostic modality with lower costs and widespread applicability for MSI detection. This study aims to detect MSI directly from H&E histology slides in gastric cancer, providing a cost-effective alternative. The performance of well-known deep convolutional neural networks (DCNNs) and a proposed architecture are compared. Medical image datasets are typically smaller than benchmark datasets like ImageNet, necessitating the use of off-the-shelf DCNN architectures developed for large datasets through techniques such as transfer learning. Designing an architecture proportional to a custom dataset can be tedious and may not yield desirable results. In this work, we propose an automatic method to extract a lightweight and efficient architecture from a given heavy architecture (e.g., well-known off-the-shelf DCNNs) proportional to a specific dataset. To predict MSI instability, we extracted the MicroNet architecture from the Xception network using the proposed method and compared its performance with other well-known architectures. The models were trained using tiles extracted from whole-slide images, and two evaluation strategies, tile-based and whole-slide image (WSI)-based, were employed and comp
As ocular computer-aided diagnostic(CAD)tools become more widely accessible,many researchers are developing deep learning(DL)methods to aid in ocular disease(OHD)*** eye diseases like cataracts(CATR),glaucoma(GLU),and...
详细信息
As ocular computer-aided diagnostic(CAD)tools become more widely accessible,many researchers are developing deep learning(DL)methods to aid in ocular disease(OHD)*** eye diseases like cataracts(CATR),glaucoma(GLU),and age-related macular degeneration(AMD)are the focus of this study,which uses DL to examine their *** imbalance and outliers are widespread in fundus images,which can make it difficult to apply manyDL algorithms to accomplish this analytical *** creation of efficient and reliable DL algorithms is seen to be the key to further enhancing detection *** the analysis of images of the color of the retinal fundus,this study offers a DL model that is combined with a one-of-a-kind concoction loss function(CLF)for the automated identification of *** study presents a combination of focal loss(FL)and correntropy-induced loss functions(CILF)in the proposed DL model to improve the recognition performance of classifiers for biomedical *** is done because of the good generalization and robustness of these two types of losses in addressing complex datasets with class imbalance and *** classification performance of the DL model with our proposed loss function is compared to that of the baseline models using accuracy(ACU),recall(REC),specificity(SPF),Kappa,and area under the receiver operating characteristic curve(AUC)as the evaluation *** testing shows that the method is reliable and efficient.
In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical in...
详细信息
In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase *** the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.
In neurosurgery to remove brain tumors, DICOM data, a medical imaging standard, is generated preoperatively using CT and MRI. This data is used for surgical planning. However, brain deformation problems, known as brai...
详细信息
The emergence of on-demand service provisioning by Federated Cloud Providers(FCPs)to Cloud Users(CU)has fuelled significant innovations in cloud provisioning *** to the massive traffic,massive CU resource requests are...
详细信息
The emergence of on-demand service provisioning by Federated Cloud Providers(FCPs)to Cloud Users(CU)has fuelled significant innovations in cloud provisioning *** to the massive traffic,massive CU resource requests are sent to FCPs,and appropriate service recommendations are sent by ***,the FourthGeneration(4G)-Long Term Evolution(LTE)network faces bottlenecks that affect end-user throughput and ***,the data is exchanged among heterogeneous stakeholders,and thus trust is a prime *** address these limitations,the paper proposes a Blockchain(BC)-leveraged rank-based recommender scheme,FedRec,to expedite secure and trusted Cloud Service Provisioning(CSP)to the CU through the FCP at the backdrop of base 5G communication *** scheme operates in three *** the first phase,a BCintegrated request-response broker model is formulated between the CU,Cloud Brokers(BR),and the FCP,where a CU service request is forwarded through the BR to different *** service requests,Anything-as-aService(XaaS)is supported by 5G-enhanced Mobile Broadband(eMBB)*** the next phase,a weighted matching recommender model is proposed at the FCP sites based on a novel Ranking-Based Recommender(RBR)model based on the CU *** the final phase,based on the matching recommendations between the CU and the FCP,Smart Contracts(SC)are executed,and resource provisioning data is stored in the Interplanetary File systems(IPFS)that expedite the block *** proposed scheme FedRec is compared in terms of SC evaluation and formal *** simulation,FedRec achieves a reduction of 27.55%in chain storage and a transaction throughput of 43.5074 Mbps at 150 *** the IPFS,we have achieved a bandwidth improvement of 17.91%.In the RBR models,the maximum obtained hit ratio is 0.9314 at 200 million CU requests,showing an improvement of 1.2%in average servicing latency over non-RBR models and a maximization trade-off of QoE index of 2.76
Phishing is a cybercrime activity where the perpe-Trator tricks users into believing that a fraudulent website is authentic, revealing sensitive information. Recently, the frequency of phishing attacks has increased, ...
详细信息
The superior performance of object detectors is often established under the condition that the test samples are in the same distribution as the training data. However, in many practical applications, out-of-distributi...
详细信息
暂无评论