In this paper, we design a distributed stochastic source seeking algorithm based on time-delay measurements to implement source seeking and formation control, so that vehicles can achieve and maintain a specific forma...
详细信息
In this paper, we design a distributed stochastic source seeking algorithm based on time-delay measurements to implement source seeking and formation control, so that vehicles can achieve and maintain a specific formation during the source seeking process. First, we present continuous-time stochastic averaging theorems for nonlinear delay-differential systems with stochastic perturbations. Then, based on the stochastic extremum seeking method and the leaderless formation strategy,we design a distributed stochastic source seeking algorithm based on time-delay measurements to navigate multiple velocity-actuated vehicles to search for an unknown source while achieving and maintaining a predefined formation, and the effect of the delay is eliminated by adopting the one-stage sequential predictor approach. Moreover, based on our developed stochastic averaging theorems, we prove that the average position of vehicles exponentially converges to a small neighborhood of the source in the almost sure sense, and vehicles can achieve and maintain a predefined formation. Finally, we provide numerical examples to verify the effectiveness of our proposed algorithm.
Anomaly traffic detection offers essential technical support for securing Mobile Edge Computing (MEC) networks. The emerging Large Model (LM) has attracted much attention for their excellent data generation and proces...
详细信息
Time series anomaly detection is an important task in many applications,and deep learning based time series anomaly detection has made great ***,due to complex device interactions,time series exhibit diverse abnormal ...
详细信息
Time series anomaly detection is an important task in many applications,and deep learning based time series anomaly detection has made great ***,due to complex device interactions,time series exhibit diverse abnormal signal shapes,subtle anomalies,and imbalanced abnormal instances,which make anomaly detection in time series still a *** and analysis of multivariate time series can help uncover their intrinsic spatio-temporal characteristics,and contribute to the discovery of complex and subtle *** this paper,we propose a novel approach named Multi-scale Convolution Fusion and Memory-augmented Adversarial AutoEncoder(MCFMAAE)for multivariate time series anomaly *** is an encoder-decoder-based framework with four main ***-scale convolution fusion module fuses multi-sensor signals and captures various scales of temporal ***-attention-based encoder adopts the multi-head attention mechanism for sequence modeling to capture global context *** module is introduced to explore the internal structure of normal samples,capturing it into the latent space,and thus remembering the typical ***,the decoder is used to reconstruct the signals,and then a process is coming to calculate the anomaly ***,an additional discriminator is added to the model,which enhances the representation ability of autoencoder and avoids *** on public datasets demonstrate that MCFMAAE improves the performance compared to other state-of-the-art methods,which provides an effective solution for multivariate time series anomaly detection.
The application of the electronic control unit (ECU) motivates dynamic models with high precision to simulate mechatronic systems for various analysis and design tasks like hardware-in-the-loop (HiL) simulation. Unlik...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Dialogue-based relation extraction(DialogRE) aims to predict relationships between two entities in dialogue. Current approaches to dialogue relationship extraction grapple with long-distance entity relationships in di...
详细信息
Dialogue-based relation extraction(DialogRE) aims to predict relationships between two entities in dialogue. Current approaches to dialogue relationship extraction grapple with long-distance entity relationships in dialogue data as well as complex entity relationships, such as a single entity with multiple types of connections. To address these issues, this paper presents a novel approach for dialogue relationship extraction termed the hypergraphs and heterogeneous graphs model(HG2G). This model introduces a two-tiered structure, comprising dialogue hypergraphs and dialogue heterogeneous graphs, to address the shortcomings of existing methods. The dialogue hypergraph establishes connections between similar nodes using hyper-edges and utilizes hypergraph convolution to capture multi-level features. Simultaneously, the dialogue heterogeneous graph connects nodes and edges of different types, employing heterogeneous graph convolution to aggregate cross-sentence information. Ultimately, the integrated nodes from both graphs capture the semantic nuances inherent in dialogue. Experimental results on the DialogRE dataset demonstrate that the HG2G model outperforms existing state-of-the-art methods.
The parafoil system is nonlinear and complex with a large time delay. This makes it challenging for traditional control methods to control the parafoil system effectively. However, the Markov property of reinforcement...
详细信息
Pretrained language models (PLMs) have shown remarkable performance on question answering (QA) tasks, but they usually require fine-tuning (FT) that depends on a substantial quantity of QA pairs. Therefore, improving ...
详细信息
Human activity recognition (HAR) techniques pick out and interpret human behaviors and actions by analyzing data gathered from various sensor devices. HAR aims to recognize and automatically categorize human activitie...
详细信息
Generating cover photos from story text is a non trivial challenge to solve. Existing approaches focus on generating only images from given text prompt. To the best of our knowledge, non of these approaches focus on g...
详细信息
暂无评论