As cyclic codes and maximum distance separable (MDS) codes, cyclic MDS codes have very nice structures and properties, which have been intensively investigated in literature due to their theoretical interest and pract...
详细信息
Anomaly detection in sequential signals is gaining prominence, especially with limited training data and timeliness requirements. Fully extracting the data-inside changing information, we propose a novel Wavelet-Enhan...
详细信息
Pruning is a major research field in neural networks, enhancing their efficiency and generalization. The field of pruning approaches in genetic programming (GP) is continually evolving, with researchers actively explo...
详细信息
The need for secure and efficient communication between connected devices continues to grow in healthcare systems within smart cities. Secure communication of healthcare data in Internet of Things (IoT) systems is cri...
详细信息
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...
详细信息
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel *** awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and *** techniques mitigated overfitting,stabilized training,and improved generalization *** LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,*** findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature *** additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial *** instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often *** study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are *** research m
For decades, network virtualization plays a crucial role in modern networks, e.g., 6G mobile networks: tenants construct arbitrary virtual networks on the same physical network. However, production networks are becomi...
详细信息
The Sign Language Recognition System has been designed to capture video input, process it to detect hand gestures, and translate these gestures into readable text. The project consists of several key components and st...
详细信息
Document-level relation extraction aims at extracting relational facts between two entities in a document. Existing approaches mainly focus on target entities, utilizing techniques such as graph neural networks to enh...
详细信息
The manual analysis of job resumes poses specific challenges, including the time-intensive process and the high likelihood of human error, emphasizing the need for automation in content-based recommendations. Recent a...
详细信息
Video forgery is one of the most serious problems affecting the credibility and reliability of video content. Therefore, detecting video forgery presents a major challenge for researchers due to the diversity of forge...
详细信息
暂无评论