The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO *** a lot of research on software outsourcing is going on,most of the exis...
详细信息
The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO *** a lot of research on software outsourcing is going on,most of the existing literature on offshore outsourcing deals with the outsourcing of software development *** frameworks have been developed focusing on guiding software systemmanagers concerning offshore software ***,none of these studies delivered comprehensive guidelines for managing the whole process of *** is a considerable lack of research working on managing OSMO from a vendor’s ***,to find the best practices for managing an OSMO process,it is necessary to further investigate such complex and multifaceted phenomena from the vendor’s *** study validated the preliminary OSMO process model via a case study research *** results showed that the OSMO process model is applicable in an industrial setting with few *** industrial data collected during the case study enabled this paper to extend the preliminary OSMO process *** refined version of the OSMO processmodel has four major phases including(i)Project Assessment,(ii)SLA(iii)Execution,and(iv)Risk.
With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Mac...
详细信息
With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Machine Learning(ML)-based intelligentmodelling has become a newparadigm for solving problems in the industrial domain[1–3].With numerous applications and diverse data types in the industrial domain,algorithmic and data-driven ML techniques can intelligently learn potential correlations between complex data and make efficient decisions while reducing human ***,in real-world application scenarios,existing algorithms may have a variety of limitations,such as small data volumes,small detection targets,low efficiency,and algorithmic gaps in specific application domains[4].Therefore,many new algorithms and strategies have been proposed to address the challenges in industrial applications[5–8].
Over the past decades, integration of wireless sensor networks (WSNs) and computer vision (CV) technology has shown promising results in mitigating crop losses caused by wild animal attacks. Studies have demonstrated ...
详细信息
Over the past decades, integration of wireless sensor networks (WSNs) and computer vision (CV) technology has shown promising results in mitigating crop losses caused by wild animal attacks. Studies have demonstrated the effectiveness of these technologies in providing real-time monitoring and early detection of animal intrusions into agricultural fields. By deploying WSNs equipped with motion sensors and cameras, farmers can receive instant alerts when wild animals enter their fields, allowing for timely intervention to prevent crop damage. Furthermore, advancements in CV algorithms possess made possible to automatically detect and classify the animal species, facilitating targeted response strategies. For example, sophisticated image processing techniques can differentiate between harmless birds and destructive mammals, allowing farmers to focus their efforts on deterring the most damaging species. Field trials and pilot projects implementing WSN-CV systems have reported significant reductions in crop losses attributed to wild animal raids. By leveraging data collected through sensor networks and analyzed using computer vision algorithms, farmers can make informed decisions regarding pest and insect management strategies. This data-driven approach has led to more efficient utilization of resources, such as targeted application of insecticides and pesticides, resulting in both economic and environmental benefits. Moreover, the integration of WSN-CV technology has enabled the development of innovative deterrent systems that leverage artificial intelligence and automation. These systems can deploy non-lethal methods, such as sound or light-based repellents, to deter wild animals without causing harm to the environment or wildlife populations. Overall, the combination of wireless sensor networks and computer vision technology provides the promising resolution to the long-standing issue of wild animal-related losses in agriculture. By harnessing the power of data and a
1 School of computerscience,Shaanxi Normal University,Xi’an 710119,China 2 faculty of computerscience and Control engineering,Shenzhen Institute of Advanced technology,Chinese Academy of sciences,Shenzhen 518055,Ch...
详细信息
1 School of computerscience,Shaanxi Normal University,Xi’an 710119,China 2 faculty of computerscience and Control engineering,Shenzhen Institute of Advanced technology,Chinese Academy of sciences,Shenzhen 518055,China 3 Shenzhen Key Laboratory of Intelligent Bioinformatics,Shenzhen Institute of Advanced technology,Chinese Academy of science,Shenzhen 518055,China E-mail:xjlei@***;yalichen@***;***@*** Received December 9,2022;accepted July 29,*** Identifying microbes associated with diseases is important for understanding the pathogenesis of diseases as well as for the diagnosis and treatment of *** this article,we propose a method based on a multi-source association network to predict microbe-disease associations,named ***,a heterogeneous network of multimolecule associations is constructed based on associations between microbes,diseases,drugs,and ***,the graph embedding algorithm Laplacian eigenmaps is applied to the association network to learn the behavior features of microbe nodes and disease *** the same time,the denoising autoencoder(DAE)is used to learn the attribute features of microbe nodes and disease ***,attribute features and behavior features are combined to get the final embedding features of microbes and diseases,which are fed into the convolutional neural network(CNN)to predict the microbedisease *** results show that the proposed method is more effective than existing *** addition,case studies on bipolar disorder and schizophrenia demonstrate good predictive performance of the MMHN-MDA model,and further,the results suggest that gut microbes may influence host gene expression or compounds in the nervous system,such as neurotransmitters,or metabolites that alter the blood-brain barrier.
Smart home automation is protective and preventive measures that are taken to monitor elderly people in a non-intrusive manner using simple and pervasive sensors termed Ambient Assistive Living. The smart home produce...
详细信息
With recent advancements in robotic surgery,notable strides have been made in visual question answering(VQA).Existing VQA systems typically generate textual answers to questions but fail to indicate the location of th...
详细信息
With recent advancements in robotic surgery,notable strides have been made in visual question answering(VQA).Existing VQA systems typically generate textual answers to questions but fail to indicate the location of the relevant content within the *** limitation restricts the interpretative capacity of the VQA models and their abil-ity to explore specific image *** address this issue,this study proposes a grounded VQA model for robotic surgery,capable of localizing a specific region during answer *** inspiration from prompt learning in language models,a dual-modality prompt model was developed to enhance precise multimodal information ***,two complementary prompters were introduced to effectively integrate visual and textual prompts into the encoding process of the model.A visual complementary prompter merges visual prompt knowl-edge with visual information features to guide accurate *** textual complementary prompter aligns vis-ual information with textual prompt knowledge and textual information,guiding textual information towards a more accurate inference of the ***,a multiple iterative fusion strategy was adopted for comprehensive answer reasoning,to ensure high-quality generation of textual and grounded *** experimental results vali-date the effectiveness of the model,demonstrating its superiority over existing methods on the EndoVis-18 and End-oVis-17 datasets.
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designe...
详细信息
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designed with security because they are resource constrained ***,having an accurate IoT security system to detect security attacks is *** Detection Systems(IDSs)using machine learning and deep learning techniques can detect security attacks *** paper develops an IDS architecture based on Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)deep learning *** implement our model on the UNSW-NB15 dataset which is a new network intrusion dataset that cate-gorizes the network traffic into normal and attacks *** this work,interpolation data preprocessing is used to compute the missing ***,the imbalanced data problem is solved using a synthetic data generation *** experiments have been implemented to compare the performance results of the proposed model(CNN+LSTM)with a basic model(CNN only)using both balanced and imbalanced ***,with some state-of-the-art machine learning classifiers(Decision Tree(DT)and Random Forest(RF))using both balanced and imbalanced *** results proved the impact of the balancing *** proposed hybrid model with the balance technique can classify the traffic into normal class and attack class with reasonable accuracy(92.10%)compared with the basic CNN model(89.90%)and the machine learning(DT 88.57%and RF 90.85%)***,comparing the proposed model results with the most related works shows that the proposed model gives good results compared with the related works that used the balance techniques.
This systematic literature review delves into the dynamic realm of graphical passwords, focusing on the myriad security attacks they face and the diverse countermeasures devised to mitigate these threats. The core obj...
详细信息
SHM is a very important process in terms of the safety and durability of infrastructure. Traditional SHM often faces problems detecting minor structural defects and handling large datasets. Therefore, certain more adv...
详细信息
暂无评论