作者:
Izanker, Sakshi V.Dhole, AmanKumar, Praveen
Faculty of Engineering and Technology Department of Computer and Design Maharashtra Wardha442001 India
Faculty of Engineering and Technology Department of Computer Science and Medical Engineering Maharashtra Wardha442001 India
The convergence of artificial intelligence (AI) and nanotechnology has initiated a transformative journey, introducing innovative possibilities across various fields. This review article explores the dynamic interacti...
详细信息
We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this *** propose an iterative two-grid algorithm,in which a nonlin...
详细信息
We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this *** propose an iterative two-grid algorithm,in which a nonlinear problem is first solved on the coarse space,and then a symmetric positive definite problem is solved on the fine *** main contribution in this paper is to establish a first convergence analysis,which requires dealing with four coupled error estimates,for the iterative two-grid *** also present some numerical experiments to confirm the efficiency of the proposed algorithm.
Climate change is a major issue all over the world which has a great impact on global warming especially in countries with hot arid climates like Egypt. With rapid urbanization, streets in Greater Cairo and new cities...
详细信息
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...
详细信息
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
Detection of a staircase is an important task in the fields of both assistive technology and autonomous navigation with an aim to enable substantial improvement in safety and accessibility for both those with limited ...
详细信息
The manual analysis of job resumes poses specific challenges, including the time-intensive process and the high likelihood of human error, emphasizing the need for automation in content-based recommendations. Recent a...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;theref...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a *** this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the *** the other hand,a decoder was used to reproduce the original image back after the vector was received and *** convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and *** hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding *** this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in *** first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification *** second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 *** third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.
Finding materials with specific properties is a hot topic in materials *** materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high *** the developmen...
详细信息
Finding materials with specific properties is a hot topic in materials *** materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high *** the development of physics,statistics,computerscience,and other fields,machine learning offers opportunities for systematically discovering new *** through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired *** paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse ***,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application ***,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are *** authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
We study the task of automated house design,which aims to automatically generate 3D houses from user ***,in the automatic system,it is non-trivial due to the intrinsic complexity of house designing:1)the understanding...
详细信息
We study the task of automated house design,which aims to automatically generate 3D houses from user ***,in the automatic system,it is non-trivial due to the intrinsic complexity of house designing:1)the understanding of user requirements,where the users can hardly provide high-quality requirements without any professional knowledge;2)the design of house plan,which mainly focuses on how to capture the effective information from user *** address the above issues,we propose an automatic house design framework,called auto-3D-house design(A3HD).Unlike the previous works that consider the user requirements in an unstructured way(e.g.,natural language),we carefully design a structured list that divides the requirements into three parts(i.e.,layout,outline,and style),which focus on the attributes of rooms,the outline of the building,and the style of decoration,*** the processing of architects,we construct a bubble diagram(i.e.,graph)that covers the rooms′attributes and relations under the constraint of *** addition,we take each outline as a combination of points and orders,ensuring that it can represent the outlines with arbitrary ***,we propose a graph feature generation module(GFGM)to capture layout features from the bubble diagrams and an outline feature generation module(OFGM)for outline ***,we render 3D houses according to the given style requirements in a rule-based *** on two benchmark datasets(i.e.,RPLAN and T3HM)demonstrate the effectiveness of our A3HD in terms of both quantitative and qualitative evaluation metrics.
暂无评论