咨询与建议

限定检索结果

文献类型

  • 287 篇 期刊文献
  • 273 篇 会议

馆藏范围

  • 560 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 362 篇 工学
    • 220 篇 计算机科学与技术...
    • 165 篇 软件工程
    • 91 篇 信息与通信工程
    • 91 篇 生物医学工程(可授...
    • 80 篇 生物工程
    • 48 篇 控制科学与工程
    • 45 篇 电气工程
    • 43 篇 光学工程
    • 28 篇 电子科学与技术(可...
    • 25 篇 仪器科学与技术
    • 21 篇 化学工程与技术
    • 15 篇 材料科学与工程(可...
    • 14 篇 机械工程
    • 14 篇 土木工程
    • 13 篇 建筑学
  • 252 篇 理学
    • 113 篇 生物学
    • 96 篇 物理学
    • 85 篇 数学
    • 28 篇 统计学(可授理学、...
    • 25 篇 化学
    • 16 篇 系统科学
  • 93 篇 医学
    • 86 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
    • 13 篇 医学技术(可授医学...
    • 12 篇 特种医学
  • 73 篇 管理学
    • 39 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 教育学
    • 12 篇 心理学(可授教育学...
  • 8 篇 农学
  • 7 篇 艺术学
  • 5 篇 文学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 历史学

主题

  • 36 篇 electroencephalo...
  • 26 篇 feature extracti...
  • 20 篇 training
  • 15 篇 semantics
  • 12 篇 deep learning
  • 12 篇 brain computer i...
  • 12 篇 accuracy
  • 11 篇 speech enhanceme...
  • 11 篇 computational mo...
  • 10 篇 deep neural netw...
  • 10 篇 brain modeling
  • 10 篇 machine learning
  • 9 篇 face recognition
  • 9 篇 speech recogniti...
  • 8 篇 reinforcement le...
  • 8 篇 neural networks
  • 8 篇 correlation
  • 7 篇 learning systems
  • 7 篇 image segmentati...
  • 7 篇 visualization

机构

  • 14 篇 department of br...
  • 14 篇 key laboratory o...
  • 12 篇 department of co...
  • 11 篇 center for cogni...
  • 11 篇 department of br...
  • 11 篇 department of br...
  • 9 篇 department of co...
  • 9 篇 key lab. of shan...
  • 7 篇 center for cogni...
  • 7 篇 brain and affect...
  • 6 篇 state key labora...
  • 6 篇 department of bi...
  • 6 篇 department of co...
  • 6 篇 university colle...
  • 6 篇 school of comput...
  • 6 篇 department of br...
  • 6 篇 center for brain...
  • 6 篇 dept. of brain a...
  • 6 篇 department of co...
  • 6 篇 center for cogni...

作者

  • 37 篇 wang deliang
  • 24 篇 müller klaus-rob...
  • 15 篇 lee seong-whan
  • 15 篇 yu kai
  • 15 篇 seong-whan lee
  • 11 篇 deliang wang
  • 10 篇 lu bao-liang
  • 10 篇 bao-liang lu
  • 9 篇 tenenbaum joshua...
  • 9 篇 samek wojciech
  • 9 篇 jain anil k.
  • 9 篇 wei-long zheng
  • 9 篇 chen lu
  • 9 篇 kai yu
  • 8 篇 zhao hai
  • 8 篇 montavon grégoir...
  • 7 篇 pandey ashutosh
  • 7 篇 wu si
  • 7 篇 miyapuram krishn...
  • 6 篇 tishby naftali

语言

  • 538 篇 英文
  • 20 篇 其他
  • 4 篇 中文
检索条件"机构=Computer Science and Engineering & Cognitive Science and Brain Science Programs"
560 条 记 录,以下是1-10 订阅
排序:
SEED-VII: A Multimodal Dataset of Six Basic Emotions with Continuous Labels for Emotion Recognition
收藏 引用
IEEE Transactions on Affective Computing 2024年 第02期16卷 969-985页
作者: Jiang, Wei-Bang Liu, Xuan-Hao Zheng, Wei-Long Lu, Bao-Liang Shanghai Jiao Tong University Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Brain Science and Technology Research Center Shanghai200240 China
Recognizing emotions from physiological signals is a topic that has garnered widespread interest, and research continues to develop novel techniques for perceiving emotions. However, the emergence of deep learning has... 详细信息
来源: 评论
Elevating Robust ASR By Decoupling Multi-Channel Speaker Separation and Speech Recognition
Elevating Robust ASR By Decoupling Multi-Channel Speaker Sep...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Yang, Yufeng Taherian, Hassan Kalkhorani, Vahid Ahmadi Wang, DeLiang Department of Computer Science and Engineering The Ohio State University United States Center for Cognitive and Brain Sciences The Ohio State University United States
Despite the tremendous success of automatic speech recognition (ASR) with the introduction of deep learning, its performance is still unsatisfactory in many real-world multi-talker scenarios. Speaker separation excels... 详细信息
来源: 评论
Multi-objective Feature Attribution Explanation for Explainable Machine Learning
收藏 引用
ACM Transactions on Evolutionary Learning and Optimization 2024年 第1期4卷 1-32页
作者: Wang, Ziming Huang, Changwu Li, Yun Yao, Xin Research Institute of Trustworthy Autonomous Systems Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Departmentof Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China The Advanced Cognitive Technology Lab Huawei Technologies Co. Ltd Shanghai201206 China School of Computer Science University of Birmingham BirminghamB15 2TT United Kingdom
The feature attribution-based explanation (FAE) methods, which indicate how much each input feature contributes to the model's output for a given data point, are one of the most popular categories of explainable m... 详细信息
来源: 评论
Multi-Resolution Location-Based Training for Multi-Channel Continuous Speech Separation  48
Multi-Resolution Location-Based Training for Multi-Channel C...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Taherian, Hassan Wang, DeLiang The Ohio State University Department of Computer Science and Engineering United States The Ohio State University Center for Cognitive and Brain Sciences United States
The performance of automatic speech recognition (ASR) systems severely degrades when multi-talker speech overlap occurs. In meeting environments, speech separation is typically performed to improve the robustness of A... 详细信息
来源: 评论
Cross-Domain Diffusion Based Speech Enhancement for Very Noisy Speech  48
Cross-Domain Diffusion Based Speech Enhancement for Very Noi...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Wang, Heming Wang, Deliang The Ohio State University Department of Computer Science and Engineering United States The Ohio State University Center for Cognitive and Brain Sciences United States
Deep learning based speech enhancement has achieved remarkable success, but challenges remain in low signal-to-noise ratio (SNR) nonstationary noise scenarios. In this study, we propose to incorporate diffusion-based ... 详细信息
来源: 评论
Emotion Recognition from Eye Movements Using Multi-way Autoregressive Model
Emotion Recognition from Eye Movements Using Multi-way Autor...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Ma, Tian-Fang Liu, Xuan-Hao Zheng, Wei-Long Lu, Bao-Liang Shanghai Jiao Tong University Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China
The application of physiological signals in emotion recognition is a popular research topic in human-computer interactions. Eye movement, as an important physiological signal, plays an essential role in medicine, psyc... 详细信息
来源: 评论
brain-inspired artificial intelligence research: A review
收藏 引用
science China(Technological sciences) 2024年 第8期67卷 2282-2296页
作者: WANG GuoYin BAO HuaNan LIU Qun ZHOU TianGang WU Si HUANG TieJun YU ZhaoFei LU CeWu GONG YiHong ZHANG ZhaoXiang HE Sheng Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and TelecommunicationsChongqing 400065China Key Laboratory of Cyberspace Big Data Intelligent Security Chongqing University of Posts and TelecommunicationsChongqing 400065China College of Computer and Information Science Chongqing Normal UniversityChongqing 401331China State Key Laboratory of Brain and Cognitive Science Institute of BiophysicsChinese Academy of SciencesBeijing 100101China School of Psychological and Cognitive Sciences Peking UniversityBeijing 100871China State Key Laboratory of Multimedia Information Processing School of Computer SciencePeking UniversityBeijing 100871China Department of Computer Science School of ElectronicsInformation and Electrical EngineeringShanghai Jiao Tong UniversityShanghai 200240China Faculty of Electronic and Information Engineering Xi’an Jiaotong UniversityXi’an 710049China The Center for Research on Intelligent Perception and Computing Institute of AutomationChinese Academy of SciencesBeijing 100190China Institute of Biophysics Chinese Academy of SciencesBeijing 100101China
Artificial intelligence(AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are d... 详细信息
来源: 评论
Fault-tolerant neural networks from biological error correction codes
收藏 引用
Physical Review E 2024年 第5期110卷 054303页
作者: Alexander Zlokapa Andrew K. Tan John M. Martyn Ila R. Fiete Max Tegmark Isaac L. Chuang Center for Theoretical Physics Department of Physics McGovern Institute for Brain Research Department of Brain and Cognitive Sciences Department of Electrical Engineering and Computer Science
It has been an open question in deep learning if fault-tolerant computation is possible: can arbitrarily reliable computation be achieved using only unreliable neurons? In the grid cells of the mammalian cortex, analo... 详细信息
来源: 评论
Exploring Children’s Strategies in Response to Robot’s Advice During a Group Task with iCub and Nao  16th
Exploring Children’s Strategies in Response to Robot’s A...
收藏 引用
16th International Conference on Social Robotics, ICSR + AI 2024
作者: Pusceddu, Giulia Sangineto, Mariapia Cocchella, Francesca Bogliolo, Michela Belgiovine, Giulia Lastrico, Linda Casadio, Maura Rea, Francesco Gena, Cristina Sciutti, Alessandra Robotics Brain and Cognitive Science Department Italian Institute of Technology Genoa Italy Department of Informatics Bioengineering Robotics and Systems Engineering University of Genoa Genoa Italy Department of Computer Science University of Turin Turin Italy Cognitive Architecture for Collaborative Technologies Unit Italian Institute of Technology Genoa Italy Scuola di Robotica Genoa Italy
This study investigates children’s trust in two humanoid robots, Nao and iCub, through a cooperative game designed to elicit spontaneous behaviors and group dynamics. We investigate whether participants change their ... 详细信息
来源: 评论
DOMAIN RANDOMIZATION VIA ENTROPY MAXIMIZATION  12
DOMAIN RANDOMIZATION VIA ENTROPY MAXIMIZATION
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Tiboni, Gabriele Klink, Pascal Peters, Jan Tommasi, Tatiana D'Eramo, Carlo Chalvatzaki, Georgia Department of Control and Computer Engineering Politecnico di Torino Italy Department of Computer Science Technische Universität Darmstadt Germany Center for Artificial Intelligence and Data Science University of Würzburg Germany Darmstadt Germany Centre for Cognitive Science TU Darmstadt Germany Germany Center for Mind Brain and Behavior Uni. Marburg and JLU Giessen Germany
Varying dynamics parameters in simulation is a popular Domain Randomization (DR) approach for overcoming the reality gap in Reinforcement Learning (RL). Nevertheless, DR heavily hinges on the choice of the sampling di... 详细信息
来源: 评论