The agriculture industry's production and food quality have been impacted by plant leaf diseases in recent years. Hence, it is vital to have a system that can automatically identify and diagnose diseases at an ini...
详细信息
Alzheimer’s dementia (AD) poses a significant global health challenge, characterized by progressive cognitive decline, memory impairment, and behavioral changes. The critical need for early detection to enable timely...
详细信息
In the competitive landscape of globalised markets, businesses must prioritise cost reduction for sustained competitiveness. This study delves into the dynamic facility layout problem (DFLP) within a cable production ...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
Nowadays technological advancement can be seen in the medical field starting from medical devices, data collection, analysis to diagnosis and treatment recommendations for diseases. Drug and treatment recommendation i...
详细信息
The kidney is an important organ of humans to purify the *** healthy function of the kidney is always essential to balance the salt,potassium and pH levels in the ***,the failure of kidneys happens easily to human bei...
详细信息
The kidney is an important organ of humans to purify the *** healthy function of the kidney is always essential to balance the salt,potassium and pH levels in the ***,the failure of kidneys happens easily to human beings due to their lifestyle,eating habits and diabetes *** pre-diction of kidney stones is compulsory for timely *** processing-based diagnosis approaches provide a greater success rate than other detection *** this work,proposed a kidney stone classification method based on optimized Transfer Learning(TL).The Deep Convolutional Neural Network(DCNN)models of DenseNet169,MobileNetv2 and GoogleNet applied for clas-sifi*** combined classification results are processed by ensemble learning to increase classification *** hyperparameters of the DCNN model are adjusted by the metaheuristic algorithm of Gorilla Troops Optimizer(GTO).The proposed TL model outperforms in terms of all the parameters compared to other DCNN models.
Secure UPI specializes in developing an advanced fraud detection gadget the usage of the effective XGBoost device getting to know set of rules to create an advanced fraud identity device. XGBoost is a properly-proper ...
详细信息
Nowadays big shopping marts are expanding their business all over the world but not all marts are fully protected with the advanced security system. Very often we come across cases where people take the things out of ...
详细信息
Listening to music can change the mood of any individual based on type of song like classic, pop or hip-hop. Music can have very strong influence on an individual's emotions. These emotions can be recognized by ex...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
暂无评论