The scientific literature contains essential information connected to proteins, drugs, and symptoms. Researchers are extracting organized, brief, and understandable information from unstructured texts to keep up with ...
详细信息
In recent years, novel view synthesis from a monocular image has become a research hot-spot that attracts significant attention. Some recent work identifies latent vectors for high-quality view generation via iterativ...
详细信息
In recent years, novel view synthesis from a monocular image has become a research hot-spot that attracts significant attention. Some recent work identifies latent vectors for high-quality view generation via iterative optimisation, which is a time-consuming process. In contrast, some others utilise an encoder learning a mapping function to approximately estimate optimal latent codes, which significantly reduces its processing time but sacrifices reconstruction quality. Consequently, how to balance synthesis quality and its generation efficiency still remains challenging. In this paper, we propose a residual-based encoder to incorporate with a 3D Generative Adversarial Networks (GAN), named ReE3D, for novel view synthesis. It applies an iterative prediction of latent codes to ensure much higher quality of novel view synthesis with an insignificant increase of processing time when compared to existing encoder-based 3D GAN inversion methods. Additionally, we enforce a novel geometric loss constraint on the encoder to predict view-invariant latent codes, thus effectively mitigating the trade-off between geometric and texture quality in 3D GAN inversion. Extensive experimental results demonstrate that our extended encoder-based method has achieved best trade-off performance in terms of novel view synthesis quality and its execution time. Our method has gained comparable synthesis quality with exponentially decreased processing time when compared to iterative optimisation methods, while improved synthesis performance of encoder-based methods significantly. IEEE
Unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC), as a way of coping with delaysensitive and computing-intensive tasks, is considered to be a key technology to solving the challenges of terrestrial MEC...
详细信息
Unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC), as a way of coping with delaysensitive and computing-intensive tasks, is considered to be a key technology to solving the challenges of terrestrial MEC networks. In this work, we study the problem of collaborative service provisioning(CSP) for UAV-assisted MEC. Specifically, taking into account the task latency and other resource constraints, this paper investigates how to minimize the total energy consumption of all terrestrial user equipments, by jointly optimizing computing resource allocation, task offloading, UAV trajectory, and service placement. The CSP problem is a non-convex mixed integer nonlinear programming problem, owing to the complex coupling of mixed integral variables and non-convexity of CSP. To address the CSP problem, this paper proposes an alternating optimization-based solution with the convergence guarantee as follows. We iteratively deal with the joint service placement and task offloading subproblem, and UAV movement trajectory subproblem, by branch and bound and successive convex approximation, respectively,while the closed form of the optimal computation resource allocation can be efficiently obtained. Extensive simulations validate the effectiveness of the proposed algorithm compared to three baselines.
Person re-identification (Re-ID) is a classical computer vision task and has significant applications for public security and information forensics. Recently, long-term Re-ID with clothes-changing has attracted increa...
详细信息
Effective software fault prediction is crucial for minimizing errors during software development and preventing subsequent failures. This research introduces an enhanced Random Forest-based approach for predicting sof...
详细信息
Accurately diagnosing Alzheimer's disease is essential for improving elderly ***,accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Al...
详细信息
Accurately diagnosing Alzheimer's disease is essential for improving elderly ***,accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Alzheimer's ***,most of the existing methods perform Alzheimer's disease diagnosis and mini-mental state examination score prediction separately and ignore the relation between these two *** address this challenging problem,we propose a novel multi-task learning method,which uses feature interaction to explore the relationship between Alzheimer's disease diagnosis and minimental state examination score *** our proposed method,features from each task branch are firstly decoupled into candidate and non-candidate parts for ***,we propose feature sharing module to obtain shared features from candidate features and return shared features to task branches,which can promote the learning of each *** validate the effectiveness of our proposed method on multiple *** Alzheimer's disease neuroimaging initiative 1 dataset,the accuracy in diagnosis task and the root mean squared error in prediction task of our proposed method is 87.86%and 2.5,*** results show that our proposed method outperforms most state-of-the-art *** proposed method enables accurate Alzheimer's disease diagnosis and mini-mental state examination score ***,it can be used as a reference for the clinical diagnosis of Alzheimer's disease,and can also help doctors and patients track disease progression in a timely manner.
The surging global demand for energy is primarily fueled by a burgeoning world population and elevated living standards. However, with traditional fossil fuels like oil dwindling in availability, there is an urgent ne...
详细信息
Indian Classical dance forms like bharathanatyam are composed of advanced hand gestures, facial expressions moreover as body moments. Because of its complexity, identifying each mudra in bharathanatyam is extremely di...
详细信息
Video recommendation is the need of the hour in the era of Web 3.0. And there is a need for semantically inclined Web 3.0 compliant framework for video recommendation. In this paper, a WCMIVR framework which is a Web ...
详细信息
Significant progress has been made in real-time object detection, with YOLOv7 emerging as a state-of-the-art model that achieves the highest levels of accuracy and speed. This study combines Bag-of-Freebies (BoF) stra...
详细信息
暂无评论