Emerging technologies of Agriculture 4.0 such as the Internet of Things (IoT), Cloud Computing, Artificial Intelligence (AI), and 5G network services are being rapidly deployed to address smart farming implementation-...
详细信息
Everyday, many individuals face online trolling and receive hate on different social media platforms like Twitter, Instagram to name a few. Often these comments involving racial abuse, hate based on religion, caste ar...
详细信息
ISBN:
(纸本)9798350339369
Everyday, many individuals face online trolling and receive hate on different social media platforms like Twitter, Instagram to name a few. Often these comments involving racial abuse, hate based on religion, caste are made by anonymous people over the internet, and it is quite a task to keep these comments under control. So, the objective was to develop a Machine Learning Model to help identify these comments. A Deep Learning Model (a sequential model) was made and it was trained to identify and classify a comment based on whether it is an apt comment or not. LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN) that is particularly well-suited for modeling sequential data, such as text. LSTMs are capable of modeling long-term dependencies in sequential data. In the case of text classification, this means that LSTMs can take into account the context of a word or phrase within a sentence, paragraph, or even an entire document. LSTMs can learn to selectively forget or remember information from the past, which is useful for filtering out noise or irrelevant information in text. LSTMs are well-established in the field of natural language processing (NLP) and have been shown to be effective for various NLP tasks, including sentiment analysis and text classification. Binary cross-entropy is a commonly used loss function in deep learning models for binary classification problems, such as predicting whether a comment is toxic or not. Binary cross-entropy is designed to optimize the model's predictions based on the binary nature of the classification task. It penalizes the model for assigning a low probability to the correct class and rewards it for assigning a high probability to the correct class. The loss function is differentiable, which allows gradient-based optimization methods to be used during training to minimize the loss and improve the model's performance. Binary cross-entropy is a well-established loss function that has been extensively used
The world has witnessed an exponential increase in the number of Internet Connected computers due to various causes. This exponential increase and the resulting dependence have had far reaching cybersecurity implicati...
详细信息
Detecting dangerous driving behavior is a critical research area focused on identifying and preventing actions that could lead to traffic accidents, such as smoking, drinking, yawning, and drowsiness, through technica...
详细信息
With the development of artificial intelligence, deep learning has been increasingly used to achieve automatic detection of geographic information, replacing manual interpretation and improving efficiency. However, re...
详细信息
The entertainment industry is booming, and machine learning is playing a vital role in the technical world. Content consumption habits are growing more complicated and evolving at a faster rate than ever before. Machi...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
This research paper presents an innovative approach for automated bone fracture discovery and bracket using digital image processing ways and the Scale Invariant point Transform (SIFT) algorithm. The proposed system e...
详细信息
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).I...
详细信息
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure *** paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure *** constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse *** the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are *** is evaluated,and the data results demonstrate that SCD achieves the above objectives.
Cloud computing is an on-demand service resource that includes applications to data centres on a pay-per-use basis. While allocating resources, the node failure causes the cloud service failures. This reduces the qual...
详细信息
暂无评论