Diabetes is a health condition that only occurs when the body either does not use insulin effectively or produces an insufficient amount of insulin from the pancreas. Insulin, a hormone that regulates blood sugar leve...
详细信息
The healthcare industry has undergone a significant transformation in recent years, with the integration of information technology and online platforms revolutionizing the way medical services are delivered. One such ...
详细信息
Code review is a critical process in software development, contributing to the overall quality of the product by identifying errors early. A key aspect of this process is the selection of appropriate reviewers to scru...
详细信息
Code review is a critical process in software development, contributing to the overall quality of the product by identifying errors early. A key aspect of this process is the selection of appropriate reviewers to scrutinize changes made to source code. However, in large-scale open-source projects, selecting the most suitable reviewers for a specific change can be a challenging task. To address this, we introduce the Code Context Based Reviewer Recommendation (CCB-RR), a model that leverages information from changesets to recommend the most suitable reviewers. The model takes into consideration the paths of modified files and the context derived from the changesets, including their titles and descriptions. Additionally, CCB-RR employs KeyBERT to extract the most relevant keywords and compare the semantic similarity across changesets. The model integrates the paths of modified files, keyword information, and the context of code changes to form a comprehensive picture of the changeset. We conducted extensive experiments on four open-source projects, demonstrating the effectiveness of CCB-RR. The model achieved a Top-1 accuracy of 60%, 55%, 51%, and 45% on the Android, OpenStack, QT, and LibreOffice projects respectively. For Mean Reciprocal Rank (MRR), CCB achieved 71%, 62%, 52%, and 68% on the same projects respectively, thereby highlighting its potential for practical application in code reviewer recommendation.
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future *** this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
In the context of the Chandrayaan 3 Lunar Mission, this research paper introduces a real-time image retrieval and denoising system powered by autoencoders, designed to tackle the challenge of noisy space imagery. Leve...
详细信息
With the development of artificial intelligence,neural network provides unique opportunities for holography,such as high fidelity and dynamic *** to obtain real 3D scene and generate high fidelity hologram in real tim...
详细信息
With the development of artificial intelligence,neural network provides unique opportunities for holography,such as high fidelity and dynamic *** to obtain real 3D scene and generate high fidelity hologram in real time is an urgent ***,we propose a liquid lens based holographic camera for real 3D scene hologram acquisition using an end-to-end physical model-driven network(EEPMD-Net).As the core component of the liquid camera,the first 10 mm large aperture electrowetting-based liquid lens is proposed by using specially fabricated *** design of the liquid camera ensures that the multi-layers of the real 3D scene can be obtained quickly and with great imaging *** EEPMD-Net takes the information of real 3D scene as the input,and uses two new structures of encoder and decoder networks to realize low-noise phase *** comparing the intensity information between the reconstructed image after depth fusion and the target scene,the composite loss function is constructed for phase optimization,and the high-fidelity training of hologram with true depth of the 3D scene is realized for the first *** holographic camera achieves the high-fidelity and fast generation of the hologram of the real 3D scene,and the reconstructed experiment proves that the holographic image has the advantage of low *** proposed holographic camera is unique and can be used in 3D display,measurement,encryption and other fields.
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural languag...
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural language processing tasks,but also captured widespread attention from the public due to their great potential in a variety of real-world applications (***,search engines,writing assistants,etc.)through providing general-purpose intelligent services.A few of the LLMs are becoming foundation models,an analogy to infrastructure,that empower hundreds of downstream applications.
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
Ultrasound imaging plays a crucial role in the detection of breast cancer, offering real-time visualization with high resolution and without ionizing radiation. Accurate segmentation of tumors from ultrasound images i...
详细信息
Renewable energy sources, which include sunlight, wind and water, are energy sources that are naturally replenished on a human timescale. These types of energy sources have a number of advantages over fossil fuels, su...
详细信息
暂无评论