Human Pose Estimation is the task of estimating the human joints in a 2D or 3D coordinate plane from an input RGB image. The 2D HPE are of two types: top-down and bottom-up. The 3D Human Pose Estimation gives better u...
详细信息
The advent of Web 3.0 has opened up new possibilities for the development of secure, decentralized digital solutions. Having a safe and user-friendly cryptocurrency wallet is essential in this new era where digital as...
详细信息
Weather forecasting predicts atmospheric conditions at a particular time and place. It is an important task with a wide range of applications, including agriculture, transportation, and disaster prevention. Traditiona...
详细信息
The alarming rise in instances of skin cancer in recent years, one of the most prevalent malignancies worldwide, emphasises how important early and accurate identification is. The SkinSage project, which combines the ...
详细信息
Brain tumor classification is crucial for personalized treatment *** deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may be overlooked d...
详细信息
Brain tumor classification is crucial for personalized treatment *** deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may be overlooked during global feature ***,we propose a brain tumor Magnetic Resonance Imaging(MRI)classification model based on a global-local parallel dual-branch *** global branch employs ResNet50 with a Multi-Head Self-Attention(MHSA)to capture global contextual information from whole brain images,while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor *** features from both branches are processed through designed attention-enhanced feature fusion module to filter and integrate important ***,to address sample imbalance in the dataset,we introduce a category attention block to improve the recognition of minority *** results indicate that our method achieved a classification accuracy of 98.04%and a micro-average Area Under the Curve(AUC)of 0.989 in the classification of three types of brain tumors,surpassing several existing pre-trained Convolutional Neural Network(CNN)***,feature interpretability analysis validated the effectiveness of the proposed *** suggests that the method holds significant potential for brain tumor image classification.
Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product *** efforts of digital twinning neglect the decisive consumer feedback in...
详细信息
Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product *** efforts of digital twinning neglect the decisive consumer feedback in product development stages,failing to cover the gap between physical and digital *** work mines real-world consumer feedbacks through social media topics,which is significant to product *** specifically analyze the prevalent time of a product topic,giving an insight into both consumer attention and the widely-discussed time of a *** primary body of current studies regards the prevalent time prediction as an accompanying task or assumes the existence of a preset ***,these proposed solutions are either biased in focused objectives and underlying patterns or weak in the capability of generalization towards diverse *** this end,this work combines deep learning and survival analysis to predict the prevalent time of *** propose a specialized deep survival model which consists of two *** first module enriches input covariates by incorporating latent features of the time-varying text,and the second module fully captures the temporal pattern of a rumor by a recurrent network ***,a specific loss function different from regular survival models is proposed to achieve a more reasonable *** experiments on real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods.
From dreamscapes to photorealistic portraits, text-to-image generation pushes the boundaries of AI creativity. This survey navigates diverse techniques, such as GANs, VAEs, and Diffusion models, uncovering their poten...
详细信息
Predicting faults in a software system can be performed using software reliability models. Reliability is a real- world aspect that is related to several real-life issues which depends on several factors. Different al...
详细信息
This research paper investigates the combination of cutting-edge deep learning architectures, specifically the Swin Transformer, with conventional feature extraction methods, such as the Scale-Invariant Feature Transf...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relativ...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relatively time-consuming but also cannot provide representative complete shape features based on partial *** this paper,a novel feature alignment fast point cloud completion network(FACNet)is proposed to directly and efficiently generate the detailed shapes of *** aligns high-dimensional feature distributions of both partial and complete point clouds to maintain global information about the complete *** its decoding process,the local features from the partial point cloud are incorporated along with the maintained global information to ensure complete and time-saving generation of the complete point *** results show that FACNet outperforms the state-of-theart on PCN,Completion3D,and MVP datasets,and achieves competitive performance on ShapeNet-55 and KITTI ***,FACNet and a simplified version,FACNet-slight,achieve a significant speedup of 3–10 times over other state-of-the-art methods.
暂无评论