Ransomware is one of the most advanced malware which uses high computer resources and services to encrypt system data once it infects a system and causes large financial data losses to the organization and individuals...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solve...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the *** this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for *** main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an Information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data ***,we conducted extensive experiments to evaluate the UAV-ITD *** results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.
Graph neural networks have proven their effectiveness for user-item interaction graph collaborative filtering. However, most of the existing recommendation models highly depended on abundant and high-quality datasets ...
详细信息
The ability to accurately predict urban traffic flows is crucial for optimising city ***,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mo...
详细信息
The ability to accurately predict urban traffic flows is crucial for optimising city ***,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility *** learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal ***,these models often become overly complex due to the large number of hyper-parameters *** this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction *** comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest *** the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 ***,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer *** Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time *** numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
VGIS (Virtual Geographic Information System) Platform is a unified oilfield operations management platform based on MaaS (Management as a Service) that integrates advanced technologies such as AIoT (Artificial Intelli...
详细信息
Cloud Computing (CC) is widely adopted in sectors like education, healthcare, and banking due to its scalability and cost-effectiveness. However, its internet-based nature exposes it to cyber threats, necessitating ad...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
Dual-phase heterointerface electrocatalysts(DPHE)constructed by oxygen reduction reaction(ORR)-and oxygen evolution reaction(OER)-active elements exhibit excellent bifunctional activity and long-term durability due to...
详细信息
Dual-phase heterointerface electrocatalysts(DPHE)constructed by oxygen reduction reaction(ORR)-and oxygen evolution reaction(OER)-active elements exhibit excellent bifunctional activity and long-term durability due to the abundant interface exposure and synergistic catalytic ***,low-dimensional N-doped graphene nanoribbons(N-GNRs)coupling with ultrathin CoO nanocomposites(N-GNRs/CoO)were controllably fabricated through a facile two-step approach using synthesized Co(OH)_2 nanosheet as CoO *** functional theory(DFT)calculations and experimental characterizations prove that the formation of interface between N-GNRs and CoO can induce local charge redistribution,contributing to the improvement of catalytic activity and *** optimal N-GNRs/CoO DPHE possesses hierarchically porous architectures and presents outstanding bifunctional activities with a small potential gap of 0.729 V between the potential at 10 mA·cm^(-2)for OER and the halfwave potential for ORR,which outperforms Pt/C+IrO_(2)and the majority of noble-metal-free bifunctional ***-and solid-state rechargeable Zn-air batteries assembled with N-GNRs/CoO as the cathode also display high peak power density and fantastic cycle stability,superior to that of benchmark Pt/C+IrO_(2)*** is anticipated to offer significant benefits toward high activity,stability and mechanical flexibility bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries.
The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprec...
详细信息
The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprecedented capabilities that can revolutionize how healthcare services are delivered and experienced. This paper explores the potential of QIoT in the context of smart healthcare, where interconnected quantum-enabled devices and systems create an ecosystem that enhances data security, enables real-time monitoring, and advances medical knowledge. We delve into the applications of quantum sensors in precise health monitoring, the role of quantum communication in secure telemedicine, and the computational power of quantum computing in drug discovery and personalized medicine. We discuss challenges such as technical feasibility, scalability, and regulatory considerations, along with the emerging trends and opportunities in this transformative field. By examining the intersection of quantum technologies and smart healthcare, this paper aims to shed light on the novel approaches and breakthroughs that could redefine the future of healthcare delivery and patient outcomes. IEEE
In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d...
详细信息
In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely *** verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented *** this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly *** verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.
暂无评论