In 2018, there were 1 million occurrences of non-melanoma cancer and 288,000 occurrences of malignant skin cancer (MM) recorded worldwide. Given the aging of the population and limited resources for medical care, a co...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
With the profound use of digital contents in education and social media, multimedia content have become a prevalent means of communication and with such rapid increase, information security is still a major concern. T...
详细信息
With its untameable and traceable properties,blockchain technology has been widely used in the field of data *** to preserve individual privacy while enabling efficient data queries is one of the primary issues with s...
详细信息
With its untameable and traceable properties,blockchain technology has been widely used in the field of data *** to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data *** this paper,we study verifiable keyword frequency(KF)queries with local differential privacy in *** the numerical and the keyword attributes are present in data objects;the latter are sensitive and require privacy ***,prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF *** propose an efficient framework that protects data owners’privacy on keyword attributes while enabling quick and verifiable query processing for KF *** framework computes an estimate of a keyword’s frequency and is efficient in query time and verification object(VO)size.A utility-optimized local differential privacy technique is used for privacy *** data owner adds noise locally into data based on local differential privacy so that the attacker cannot infer the owner of the keywords while keeping the difference in the probability distribution of the KF within the privacy *** propose the VB-cm tree as the authenticated data structure(ADS).The VB-cm tree combines the Verkle tree and the Count-Min sketch(CM-sketch)to lower the VO size and query *** VB-cm tree uses the vector commitment to verify the query *** fixed-size CM-sketch,which summarizes the frequency of multiple keywords,is used to estimate the KF via hashing *** conduct an extensive evaluation of the proposed *** experimental results show that compared to theMerkle B+tree,the query time is reduced by 52.38%,and the VO size is reduced by more than one order of magnitude.
Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array *** the help of the PV array numerical model,this paper ...
详细信息
Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array *** the help of the PV array numerical model,this paper explores the effects of PV module ageing on the PV array power,and the power gains and costs of rearranging and recabling aged PV modules in a PV *** numerical PV array model is first revised to account for module ageing,rearrangement and recabling,with the relevant equations presented *** updated numerical model is then used to obtain the array powers for seven different PV *** power results are then analysed in view of the attributes of the seven PV array examples.A guiding method to recommend recabling after rearranging aged modules is then proposed,leading to further significant power gains,while eliminating intra-row *** certain conditions are met,it was shown that recabling PV modules after rearranging them may lead to further significant power gains,reaching 57%and 98%in two considered PV array *** gains are possible in other arrays.A cost-benefit analysis weighing annual power gains versus estimated recabling costs is also given for the seven considered PV array examples to guide recabling decisions based on technical and economic *** the considered examples,recabling costs can be recovered in<4 *** with the powers of the aged arrays,power gains due to our proposed rearranging and recabling the PV arrays ranged between 73%and 131%in the considered examples—well over the gains reported in the ***,the cost of our static module rearrangement and recabling method outshines the costs of dynamic reconfiguration methods recently published in the literature.
Apricot detection is a prerequisite for counting and harvesting tasks. Existing algorithms face challenges in adapting to the impacts of complex environmental factors such as lighting variations, shadows, dense foliag...
详细信息
Flood prediction is one of the most critical challenges facing today's world. Predicting the probable time of a flood and the area that might get affected is the main goal of it, and more so for a region like Sylh...
详细信息
Flood prediction is one of the most critical challenges facing today's world. Predicting the probable time of a flood and the area that might get affected is the main goal of it, and more so for a region like Sylhet, Bangladesh where transboundary water flows and climate change have increased the risk of disasters. Accurate flood detection plays a vital role in mitigating these impacts by allowing timely early warnings and strategic planning. Recent advancements in flood prediction research include the development of robust, accurate, and low-cost flood models designed for urban deployment. By applying and utilizing powerful deep learning models show promise in improving the accuracy of prediction and prevention. But those models faced significant issues related to scalability, data privacy concerns and limitations of cross-border data sharing including the inaccuracies in prediction models due to changing climate patterns. To address this, our research adopts the Federated Learning (FL) framework in an effort to train state-of-the-art deep learning models like Long Short-Term Memory Recurrent Neural Network (LSTM-RNN), Feed-Forward Neural Network (FNN) and Temporal Fusion Transformer-Convolutional Neural Network (TFT -CNN) on a 78-year dataset of rainfall, river flow, and meteorological variables from Sylhet and its upstream regions in Meghalaya and Assam, India. This approach promotes data privacy and allows collaborative learning while working under cross-border data-sharing constraints, therefore improving the accuracy of prediction. The results showed that the best-performing FNN model achieved an R-squared value of 0.96, a Mean Absolute Error (MAE) value of 0.02, Percent bias (PBIAS) value of 0.4185 and lower Root Mean Square Error (RMSE) in the FL environment. Explainable AI techniques, such as SHAP, sheds light on the most significant role played by upstream rainfall and river dynamics, particularly from Cherrapunji and the Surma-Kushiyara river system, in d
As software development models and methods mature, large-scale software systems emerge. However, a critical challenge remains: the lack of a comprehensive software test data management model that integrates basic data...
详细信息
Over the years, numerous optimization problems have been addressed utilizing meta-heuristic algorithms. Continuing initiatives have always been to create and develop new, practical algorithms. This work proposes a nov...
详细信息
Question classification (QC) is a process that involves classifying questions based on their type to enable systems to provide accurate responses by matching the question type with relevant information. To understand ...
详细信息
暂无评论