The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has ex...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has expanded the potential targets that hackers might *** adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or *** identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious *** research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)*** proposed model can identify various types of cyberattacks,including conventional and distinctive *** networks,a specific kind of feedforward neural networks,possess an intrinsic memory *** Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended *** such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual *** are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection *** model utilises Recurrent Neural Networks,specifically exploiting LSTM *** proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
Millions of people die from lung illness each year as a result of its rise in recent years. CXR imaging is one of the most widely used and reasonably priced diagnostic techniques for the diagnosis of many illnesses. U...
详细信息
Millions of people die from lung illness each year as a result of its rise in recent years. CXR imaging is one of the most widely used and reasonably priced diagnostic techniques for the diagnosis of many illnesses. Unfortunately, even for seasoned radiologists, accurately diagnosing sickness from Chest X-Rays (CXR) samples is challenging. To combat the pandemic, a reliable, affordable, and efficient way to diagnose lung disease has become essential. Consequently, a unique optimized Auto Encod-BI Long-Short Term Memory (Bi-LSTM) model is proposed in this research work. Pre-processing, segmentation, feature extraction, and multiple types of lung illness diagnosis are the four main stages of the suggested model. First, Laplacian filtering and Contrast Limited Adaptive Histogram Equalization (CLAHE) are used to pre-process the gathered CXR pictures. Next, the Region of Interest (ROI) from the previously processed images are recognized by means of the newly enhanced MobileNetV2. The new Self-Improved Slime Mould Algorithm (SI-SMA) is used to fine-tune the hyper-parameters of MobileNetV2 in order to precisely identify the afflicted locations. Based on the phenomenon of slime mould oscillation, the conventional Slime Mould Algorithm (SMA) model has been modified with the creation of the SI-SMA model. Next, characteristics like the Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) are taken out. Finally, a unique AutoEncod-BiLSTM Framework—which is divided into three categories—is shown to automate the process of identifying illnesses in CXR pictures: pneumonia, COVID-19, and normal. The autoencoder and Bi-LSTM are combined to create the suggested AutoEncod-BiLSTM model. The retrieved features are used to train the AutoEncod-BiLSTM Framework. Moreover, the proposed model enhanced the disease detection efficiency than the existing models and the disease detection accuracy of the proposed model is about 99.1%. Furthermore, the suggested model attains better
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research wo...
详细信息
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research works on Legal Judgment Prediction(LJP)use traditional optimization algorithms in deep learning techniques falling into local *** research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food ***,the selection of search agents within a boundary is done randomly,which increases the time required to achieve global *** address this,the proposed Chaotic Opposition Learning-based Pelican Optimization(COLPO)method incorporates the concept of Opposition-Based Learning combined with a chaotic cubic function,enabling deterministic selection of random numbers and reducing the number of iterations needed to reach global ***,the LJP approach in this work uses improved semantic similarity and entropy features to train a hybrid classifier combining Bi-GRU and Deep *** output scores are fused using improved score level fusion to boost prediction *** proposed COLPO method experiments with real-time Madras High Court criminal cases(Dataset 1)and the Supreme Court of India database(Dataset 2),and its performance is compared with nature-inspired algorithms such as Sparrow Search Algorithm(SSA),COOT,Spider Monkey Optimization(SMO),Pelican Optimization Algorithm(POA),as well as baseline classifier models and transformer neural *** results show that the proposed hybrid classifier with COLPO outperforms other cutting-edge LJP algorithms achieving 93.4%and 94.24%accuracy,respectively.
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
The rapid advancement and proliferation of Cyber-Physical Systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
Although lots of research has been done in recognizing facial expressions,there is still a need to increase the accuracy of facial expression recognition,particularly under uncontrolled *** use of Local Directional Pa...
详细信息
Although lots of research has been done in recognizing facial expressions,there is still a need to increase the accuracy of facial expression recognition,particularly under uncontrolled *** use of Local Directional Patterns(LDP),which has good characteristics for emotion detection has yielded encouraging *** innova-tive end-to-end learnable High Response-based Local Directional Pattern(HR-LDP)network for facial emotion recognition is implemented by employing fixed convolutional filters in the proposed *** combining learnable convolutional layers with fixed-parameter HR-LDP layers made up of eight Kirsch filters and derivable simulated gate functions,this network considerably minimizes the number of network *** cost of the parameters in our fully linked layers is up to 64 times lesser than those in currently used deep learning-based detection *** seven well-known databases,including JAFFE,CK+,MMI,SFEW,OULU-CASIA and MUG,the recognition rates for seven-class facial expression recognition are 99.36%,99.2%,97.8%,60.4%,91.1%and 90.1%,*** results demonstrate the advantage of the proposed work over cutting-edge techniques.
This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
The Internet of Things(IoT)has taken the interconnected world by *** to their immense applicability,IoT devices are being scaled at exponential proportions ***,very little focus has been given to securing such *** the...
详细信息
The Internet of Things(IoT)has taken the interconnected world by *** to their immense applicability,IoT devices are being scaled at exponential proportions ***,very little focus has been given to securing such *** these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at *** have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in *** we propose a lightweight authentication protocol to provide proper access to such *** have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,*** define the architecture we used a three-layered model consisting of cloud,fog,and edge *** have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and *** also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human *** find that our protocol works the fastest when using ring learning with *** prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications *** conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.
A multi-secret image sharing (MSIS) scheme facilitates the secure distribution of multiple images among a group of participants. Several MSIS schemes have been proposed with a (n, n) structure that encodes secret...
详细信息
暂无评论