Pulmonary malignancy remains the most prevalent and fatal type of cancer on a global scale playing major role on the yearly death from cancer. By using proficient and computerizes testing technologies, it is pursued b...
详细信息
Mobile crowd computing (MCC) has emerged as a promising paradigm to leverage the underutilised computational resources of smart mobile devices (SMDs). However, the energy constraints of these devices pose a significan...
详细信息
Point cloud object detection is gradually playing a key role in autonomous driving tasks. To address the issue of insensitivity to sparse objects in point cloud object detection, we have made improvements to the voxel...
详细信息
Scene text removal is a recent development in computer vision that replaces text patches in natural images with the appropriate background. Text removal is a difficult process leading to faulty areas of text cont...
详细信息
Scene text removal is a recent development in computer vision that replaces text patches in natural images with the appropriate background. Text removal is a difficult process leading to faulty areas of text containing text strokes with their hazy backgrounds. Text in the real world uses a variety of font kinds, some of which are difficult to localize due to their chaotic shapes, varied shading degrees, and orientation *** text erasing may include the subtasks of text detection as well as text inpainting. Both subtasks require a large amount of data to be successful;but, existing approaches were limited by insufficient real-world data for scene-text elimination. Eventhough the existing works produced considerable performance improvement in scene text removal, they often leave many text remains like text strokes, thus producinglow-quality visual outcomes. Therefore, this paper proposes an automatic text inpainting and video quality elevation model by using the Improved Convolutional Network-based ***, the video samples are collected from the diverse datasets and then converted into frames. Next, the frames are deblurred using an enhanced Convolutional Neural Network (CNN) model that has three convolutional layers for accurately localizing the texts in frames. Subsequently, the texts are detected by utilizing the CLARA-based VGG-16 network. Afterward, the text strokes are removed using a convolutional Encoder and decoder network to eliminate the presence of text on complex backgrounds and textures. Here, the coordinates of text in the deblurred frames are used to crop out the text stroke regions. So, the texts are in-painted, and then, the text in-painted regions are pasted back to their original positions in the frames. Furthermore, the video quality is elevated with the help of the DenseNet-centric Enhancement network. The experimental outcomes demonstrate that the proposed model effectively removed scene texts and enhanced the video qu
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactiv...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication(S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's(BS's) non-line-of-sight(NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication(ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
Interest in supporting Federated Learning (FL) using blockchains has grown significantly in recent years. However, restricting access to the trained models only to actively participating nodes remains a challenge even...
详细信息
Memory bandwidth and power consumption is of utmost importance in the design of low power edge devices. This makes it essential to conserve power both at the sensor node and the computational unit. Our paper proposes ...
详细信息
This study applies single-valued neutrosophic sets, which extend the frameworks of fuzzy and intuitionistic fuzzy sets, to graph theory. We introduce a new category of graphs called Single-Valued Heptapartitioned Neut...
详细信息
As computer systems become more complex, evaluating performance requires tracking various hardware performance counters that capture the system's internal activities. While these counters provide valuable insights...
详细信息
Multicasting over a multi-hop wireless mesh network is a challenging issue that recently received less attention. Various applications, such as distance learning, telemedicine, web radio, and online conferencing, requ...
详细信息
暂无评论