The urgent demand for clean energy solutions has intensified the search for advanced storage materials, with rechargeable alkali-ion batteries(AIBs) playing a pivotal role in electrochemical energy storage. Enhancing ...
详细信息
The urgent demand for clean energy solutions has intensified the search for advanced storage materials, with rechargeable alkali-ion batteries(AIBs) playing a pivotal role in electrochemical energy storage. Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs. Next-generation anode materials face significant challenges, including limited energy storage capacities and complex reaction mechanisms that complicate structural ***-based materials have emerged as promising candidates for AIBs due to their inherent advantages. Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials. Despite significant advances in this field, comprehensive reviews summarizing the latest developments are still sparse. This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials. It begins with an explanation of the concept of heterojunctions, including their fabrication, characterization, and classification. Cuttingedge research on Sn-based heterojunction-type anodes for AIBs is highlighted. Finally, the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhan...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce ***,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and *** paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present *** study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction *** the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the *** original dataset is used in trainingmachine learning models,and further used in generating SHAP values *** the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based *** new integrated dataset is used in re-training the machine learning *** new SHAP values generated from these models help in validating the contributions of feature sets in predicting *** conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making *** this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the *** study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of *** proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area un
Fake news, Fake certification, and Plagiarism are the most common issues arising these days. During this COVID-19 situation, there are a lot of rumors and fake news spreading and some of us are using fake certificatio...
详细信息
In recent years,the growth of female employees in the commercial market and industries has *** a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s...
详细信息
In recent years,the growth of female employees in the commercial market and industries has *** a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s *** exponential increase in assaults and attacks on women,on the other hand,is posing a threat to women’s growth,development,and *** the time of the attack,it appears the women were immobilized and needed immediate *** self-defense isn’t sufficient against abuse;a new technological solution is desired and can be used as quickly as hitting a switch or *** proposed Women Safety Gadget(WSG)aims to design a wearable safety device model based on Internet-of-Things(IoT)and Cloud *** is designed in three layers,namely layer-1,having an android app;layer-2,with messaging and location tracking system;and layer-3,which updates information in the cloud *** can detect an unsafe condition by the pressure sensor of the finger on the artificial nail,consequently diffuses a pepper spray,and automatically notifies the saved closest contacts and police station through messaging and location *** has a response time of 1000 ms once the nail is pressed;the average time for pulse rate measure is 0.475 s,and diffusing the pepper spray is 0.2–0.5 *** average activation time is 2.079 s.
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in o...
详细信息
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in order to prolong network lifetime;owing to resource-constrained nature of *** fundamental requirement of any network is routing a packet from its source to *** of a routing algorithm depends on the number of network parameters utilized by that routing *** the recent years,various routing protocol has been developed for the delay tolerant networks(DTN).A routing protocol known as spray and wait(SnW)is one of the most widely used routing algorithms for *** this paper,we study the SnW routing protocol and propose a modified version of it referred to as Pentago SnW which is based on pentagonal number *** to binary SnW shows promising results through simulation using real-life scenarios of cars and pedestrians randomly moving on a map.
Research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based ***,it entails man...
详细信息
Research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based ***,it entails many other challenges,including different illuminations,panicle sizes,shape distortions,partial occlusions,and complex *** detection algorithms are directly affected by these *** work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation(BSKD).It is designed to prioritize the preservation of knowledge in border areas through the use of feature *** feature-based knowledge distillation method allows us to compress the model without sacrificing its *** imitation mask is used to distinguish panicle-related foreground features from irrelevant background features.A significant improvement in Unmanned Aerial Vehicle(UAV)images is achieved when students imitate the teacher’s *** the UAV rice imagery dataset,the proposed BSKD model shows superior performance with 76.3%mAP,88.3%precision,90.1%recall and 92.6%F1 score.
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...
详细信息
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two sta
Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and se...
详细信息
Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and sewage treatment facilities,oil and gas pipelines,*** recent times,these systems have suffered from cyber attacks numer-ous *** have been developing cyber security solutions for Cls to avoid lasting *** to standard frameworks,cyber security based on identification,protection,detection,response,and recovery are at the core of these *** of an ongoing attack that escapes standard protection such as firewall,anti-virus,and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics of the ***,anomaly detection in physical dynamics proves an effective means to implement *** is one example of anomaly detection in the sensor/actuator data,representing such systems physical *** present EPASAD,which improves the detection technique used in PASAD to detect these micro-stealthy attacks,as our experiments show that PASAD's spherical boundary-based detection fails to *** method EPASAD overcomes this by using Ellipsoid boundaries,thereby tightening the boundaries in various dimen-sions,whereas a spherical boundary treats all dimensions *** validate EPASAD using the dataset produced by the TE-process simulator and the C-town *** results show that EPASAD improves PASAD's average recall by 5.8%and 9.5%for the two datasets,respectively.
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
In the current era of smart technology, integrating the Internet of Things (IoT) with Artificial Intelligence has revolutionized several fields, including public health and sanitation. The smart lavatory solution prop...
详细信息
暂无评论