Fruit categorization presents a significant challenge due to the diverse range of fruit types and their similarities in color, shape, size, and structure. This challenge is addressed in this research by proposing a mu...
详细信息
Crude oil prices (COP) profoundly influence global economic stability, with fluctuations reverberating across various sectors. Accurate forecasting of COP is indispensable for governments, policymakers, and stakeholde...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
This paper explores quality disclosure strategy in an e-supply chain including a supplier and an e-retailer driven by blockchain technology(BT),wherein the supplier possesses private quality information and has the op...
详细信息
This paper explores quality disclosure strategy in an e-supply chain including a supplier and an e-retailer driven by blockchain technology(BT),wherein the supplier possesses private quality information and has the option to encroach on the end *** investigate the no-encroachment and encroachment scenarios under the three quality disclosure strategies(i.e.,non-disclosure strategy,voluntary disclosure strategy and BT-supported disclosure strategy).The impact of supplier encroachment and firms’preference for disclosure strategies are *** analysis shows that regardless of the strategy chosen,encroachment always benefits the supplier but,under certain conditions,benefits the ***,with no-encroachment,both the supplier and the e-retailer have the same preference for disclosure *** encroachment,however,the supplier prefers the voluntary disclosure strategy when both the quality variability and direct selling cost are small,and BT’s operation cost is relatively large;otherwise,he prefers the BT-supported disclosure *** the e-retailer,she always prefers both the voluntary and BT-supported disclosure ***,it is observed that the BT-supported disclosure strategy emerges as optimal for both the supplier and the e-retailer when faced with significant quality variability,regardless of *** and adopting BT can generate more consumer surplus under certain ***,we extend the basic model by considering simultaneous quantity decision and find that keying findings are ***,management insights are covered and given.
Deep learning methods have played a prominent role in the development of computer visualization in recent years. Hyperspectral imaging (HSI) is a popular analytical technique based on spectroscopy and visible imaging ...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhan...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce ***,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and *** paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present *** study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction *** the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the *** original dataset is used in trainingmachine learning models,and further used in generating SHAP values *** the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based *** new integrated dataset is used in re-training the machine learning *** new SHAP values generated from these models help in validating the contributions of feature sets in predicting *** conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making *** this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the *** study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of *** proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area un
暂无评论