Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
Graph structure expression plays a vital role in distinguishing various graphs. In this work, we propose a structure-sensitive graph dictionary embedding (SS-GDE) framework to transform input graphs into the embedding...
详细信息
Recommender systems aim to filter information effectively and recommend useful sources to match users' requirements. However, the exponential growth of information in recent social networks may cause low predictio...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactiv...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication(S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's(BS's) non-line-of-sight(NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication(ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
The deaf and mute population has difficulty conveying their thoughts and ideas to others. Sign language is their most expressive mode of communication, but the general public is callow of sign language;therefore, the ...
详细信息
Recent achievements in deep learning(DL)have demonstrated its potential in predicting traffic *** predictions are beneficial for understanding the situation and making traffic control ***,most state-of-the-art DL mode...
详细信息
Recent achievements in deep learning(DL)have demonstrated its potential in predicting traffic *** predictions are beneficial for understanding the situation and making traffic control ***,most state-of-the-art DL models are consi-dered“black boxes”with little to no transparency of the underlying mechanisms for end *** previous studies attempted to“open the black box”and increase the interpretability of generated ***,handling complex models on large-scale spatiotemporal data and discovering salient spatial and temporal patterns that significantly influence traffic flow remain *** overcome these challenges,we present TrafPS,a visual analytics approach for interpreting traffic prediction outcomes to support decision-making in traffic management and urban *** measurements region SHAP and trajectory SHAP are proposed to quantify the impact of flow patterns on urban traffic at different *** on the task requirements from domain experts,we employed an interactive visual interface for the multi-aspect exploration and analysis of significant flow *** real-world case studies demonstrate the effectiveness of TrafPS in identifying key routes and providing decision-making support for urban planning.
1 *** Activity Recognition(GAR),which aims to identify activities performed collectively in videos,has gained significant attention *** conventional action recognition centered on single individuals,GAR explores the c...
详细信息
1 *** Activity Recognition(GAR),which aims to identify activities performed collectively in videos,has gained significant attention *** conventional action recognition centered on single individuals,GAR explores the complex interactions between multiple individuals.
In a number of industries, including computer graphics, robotics, and medical imaging, three-dimensional reconstruction is essential. In this research, a CNN-based Multi-output and Multi-Task Regressor with deep learn...
详细信息
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle wi...
详细信息
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall *** address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh *** FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh *** Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline ***,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
In Weighted Model Counting(WMC),we assign weights to literals and compute the sum of the weights of the models of a given propositional formula where the weight of an assignment is the product of the weights of its **...
详细信息
In Weighted Model Counting(WMC),we assign weights to literals and compute the sum of the weights of the models of a given propositional formula where the weight of an assignment is the product of the weights of its *** current WMC solvers work on Conjunctive Normal Form(CNF)***,CNF is not a natural representation for human-being in many *** by the stronger expressive power of Pseudo-Boolean(PB)formulas than CNF,we propose to perform WMC on PB *** on a recent dynamic programming algorithm framework called ADDMC for WMC,we implement a weighted PB counting tool *** compare PBCounter with the state-of-the-art weighted model counters SharpSAT-TD,ExactMC,D4,and ADDMC,where the latter tools work on CNF with encoding methods that convert PB constraints into a CNF *** experiments on three domains of benchmarks show that PBCounter is superior to the model counters on CNF formulas.
暂无评论